

MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 03

Author

Nick Carcione

Teammates

Rathin Shah

Yilin Cai

Jiayi Qiu

Kelvin Shen

March 3, 2022

Contents

1. Individual Progress 1

2. Challenges 4

3. Teamwork 4

4. Plans 5

1

1. Individual Progress

 My progress these past two weeks has been largely focused on getting the RC car that we

plan to use for initial testing up and running. This included two main activities: controlling the

steering angle of the wheels and controlling the speed of the wheels/car.

 The first of these two activities that I tackled was the control of the steering angle.

Originally, the plan was to develop an analytic mapping that would convert a desired slip angle

into the steering angle of one of the front wheels using formulas derived from standard

Ackermann geometry. This steering angle would then be converted into the angle that the servo

motor that actuates the steering linkage needs to be at. However, I quickly ran into issues trying

to accurately measure and model the physical steering system on the RC car, so instead I settled

for a mapping between the desired steering angle and the necessary servo angle. This map was

created by measuring the maximum angles that the front right tire could reach. These angles

were measured by suspending the car on its side, physically moving the tire to a neutral (straight

forward) position, and securing and zeroing an electronic level to the tire. With this setup, a

sketch of which is shown in Figure 1 below, the maximum angles that the front right wheel could

move to could be found. These values are reproduced in Table 1 on the next page. When

defining and using these angles in the Arduino software, steering angles that cause the vehicle to

turn left were defined to be negative and those that caused the vehicle to turn right were defined

as positive. The map from steering angle to servo angle was split so that the positive and

negative steering angles had their own mappings.

Figure 1: Setup used for measuring maximum steering angles

2

Table 1: Maximum steering angle values for the front right wheel and the corresponding servo

angles

 The second major task involved in getting the RC car up and running was learning how to

control the speed of the wheels. There were plenty of challenges associated with this and they

are detailed in the “Challenges” section later in this report. The main challenge I faced was

learning how to interface with the ESC that the vehicle came with. Even after trying the code

that the teams from 2016 and 2019 used to control this RC car, I was either unable to get the

wheels to move at all or, at best, move in a strange and unpredictable way. I eventually noticed a

pattern that the wheels would only rotate when a non-zero speed command was sandwiched

between zero-speed commands. After trying out some other tutorials found online and doing

further testing, I learned that the ESC is only armed after it receives a zero-speed command (i.e.,

it must receive a zero-speed command before executing non-zero speed commands). I further

realized that the PWM signals the previous teams were sending to the ESC were causing it to

draw too much power from the PSU. When this would happen, the voltage would suddenly drop

below the constant 11.1 V it was set at, and the system would shut off. To avoid this from

happening, I found the signals that corresponded to the shut off points and bounded the PWM

signals to be within these values. The important PWM values found during testing are included

in Table 2 below.

Table 2: Important PWM values and the physical phenomena they relate to

 The meaning behind these values should also be quickly explained. All of these PWM

signals are used with the writeMicroseconds() command from the Arduino Servo library.

Sending a PWM signal of 1500 causes the wheels to stop turning and is also the signal required

to arm the ESC. Around 1500 is a dead ban of signals that do not provide enough power to

reliably actuate the motor. This dead ban stretches from 1456-1534. To move the vehicle

forward, commands greater than 1500 need to be sent. As just mentioned, the vehicle begins to

creep forward at a PWM signal of 1534 and reaches maximum forward speed at a PWM signal

of 1600. To move the vehicle backward, commands less than 1500 need to be sent. The vehicle

begins to creep backward at a PWM signal of 1456 and reaches maximum backward speed at a

Angle Defn. Angle Value [°] Servo Angle [°]

Max. Turn Left (-) 43 90

Straight 0 135

Max. Turn Right 33 180

Variable PWM Value

Max. Speed - Reverse 1390

Min. Speed - Reverse 1456

Brake (Speed = 0) 1500

Min. Speed - Forward 1534

Max. Speed - Forward 1600

3

PWM signal of 1390. Desired speeds are mapped within these ranges (1534-1600 for positive

speeds and 1456-1390 for backward speeds) to avoid the dead band around 1500.

 The final circuit used that integrated both steering and speed control is shown below in

Figure 2. Using this circuit, it is possible to both steer the wheels and control their speed using

either the potentiometers (to simulate the Zamboni being manually driven) or by sending in

commands via the serial monitor (to simulate getting commands from the low-level controllers).

The button is used to switch between these two modes.

Figure 2: Circuit schematic for steering and speed control

 It is also worth noting that, from my experience with testing the car, a specific “start-up”

sequence should be followed to ensure that the ESC functions as intended. The recommended

steps are included in Figure 3 below.

Figure 3: Recommended steps for starting the RC car

4

2. Challenges

The first challenge that I faced in learning to control the RC car centered around the

steering angles of the wheels. Like the Zamboni, the RC car has an Ackermann steering

geometry, so the two steered (front) wheels have different but related steering angles when

turning. The angles of the front wheels are controlled by a single servo motor that actuates the

steering linkages. The original goal was to develop an analytic function that mapped a desired

vehicle slip angle to a desired steering angle for one of the wheels and then mapped the desired

steering angle into a desired servo angle. However, upon examining the RC car, I found that the

links where of rather arbitrary lengths and that many of the links connected at difficult to

measure angles. I was unable to find any drawings or documentation for this RC car online, so

developing an accurate analytic steering-angle-to-servo-angle function became unrealistic.

Controlling the speed of the wheels also posed a considerable challenge. At first, I tried

to control the ESC using code from the previous two MRSD teams that used this platform.

However, in both cases, the wheels would never begin to spin no matter what command I sent to

the ESC. Eventually, I began to get the wheels to spin but only if I sandwiched the speed

command in between brake (or 0 speed) commands (the wheels would only begin to rotate after

the second brake command). Even then, the visually observed speed did not seem accurate to the

desired speed. After some digging online, we found a tutorial where someone used the same

ESC we had, and we were able to use their circuit and code to learn how to successfully control

the motor speed. Another challenge that we faced with the wheel speed is that the DC motor

currently on the car does not output encoder pulses, so we have no way of measuring the current

speed for feedback control or getting encoder odometry data for our velocity

estimation/localization package.

Finally, a logistical challenge that we are currently facing with the car is that the battery it

came with (leftover from its last use in 2019) quickly began to swell and bulge. To avoid a

battery runaway event, we decided it was best to remove the battery and order a new one, which

prevents the car from driving around freely until the new battery arrives.

3. Teamwork

Rathin Shah

 Rathin worked with Yilin and Jiayi to get the follower Zamboni to follow a path in the

Gazebo simulation. His efforts focused on developing the path following logic for the Zamboni

utilizing the waypoints generated by Jiayi and a vehicle controller that he developed in Simulink.

He also assisted me in finding the maximum steering angles of the RC car so that we could

create a map between steering angle and servo angle. Additionally, Rathin designed and 3D

printed a mount for the RealSense camera.

5

Yilin Cai

 Yilin worked with Rathin and Jiayi to get the follower Zamboni to follow a path in the

Gazebo simulation. His efforts focused on making the reaction/performance of the Zamboni

realistic. He modified the dynamics parameters of the Zamboni in URDF to better reflect their

real values. He also tuned the values of the PID controller to improve the Zamboni’s reaction

when it would receive new waypoints. Yilin integrated the waypoints generated by Jiayi into the

simulation and visualized the results.

Jiayi Qiu

 Jiayi worked with Rathin and Yilin to get the follower Zamboni to follow a path in the

Gazebo simulation. Her efforts focused on estimating the velocity of the leader and generating

the waypoints for the follower to follow. She developed, tuned, and integrated an Extended

Kalman Filter (EKF) to estimate the velocity of the leader based on its position and heading

relative to the follower. She also created and published waypoints containing position, heading,

and velocity values for the follower to follow.

Kelvin Shen

 Kelvin continued developing the perception subsystem with a focus on the RealSense

camera. In simulation, he remade the URDF of the ArUco marker board using custom Gazebo

textures to achieve better, more consistent detection in simulation. He then mounted the marker

board to the back of the leader Zamboni and tested the accuracy of the pose estimation algorithm

when both the leader and follower Zambonis are moving and when the board is partially

occluded. He also tested the pose estimation algorithm on the physical RealSense using a

printed-out version of the marker board.

4. Plans

My goals for the next Progress Review are to build upon my previous work on the RC car

and get it to the point where it can follow waypoints. Achieving this benchmark would allow us

as a team to begin testing some of our algorithms and controllers as well as some of the

hardware/sensors. I also plan on helping with the testing and validation of the RealSense camera

and IMU on the RC car. Since I have spent the most time with the RC car, my role in these tests

will likely be running and maintaining the vehicle during data collection.

