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Individual Progress 
During the past few weeks, I focused on finalizing the perception module that will be 
run on a Zamboni convoy where both vehicles will be moving instead of in a setting 
with only one Zamboni and a static wall of ArUco markers (as shown in the last ILR). 
In addition, I calibrated the RealSense D435i in reality, tested and calibrated my pose 
estimation algorithm on it using a printed marker board.  
 
Pose Estimation Algorithm Test with two teleoperated Zamboni’s 
To test the perception module in a setting closest to reality, we need to attach the 
marker board to the back of another Zamboni (leader) and estimate pose as well as 
depth from it. In the last progress review, we only showed the working perception 
module given a teleoperated Zamboni along with a static wall of a marker board.  
 
However, instead of attaching the same board used in the last progress review to the 
rear of the leader Zamboni, I remade the URDF of the marker board because of the 
inconsistent scale issue (further explained in Challenges). In particular, I added the 
board image as a texture into the Gazebo materials directory so that we can directly 
render a plain box using the material tag in its URDF. After solving the scale issue by 
remaking the marker board, I attached it to the rear of the leader Zamboni according 
to the dimensions of the Zamboni URDF file. Figure 1 shows the current setting of 
our simulation.  

 
Figure 1. Leader (with marker board) and Follower (with D435i) are Launched in Gazebo 

 
To validate the output from the pose estimation algorithm, I retrieved ground truth 
poses of links in Gazebo. In particular, thanks to Yilin’s contribution which makes it 
possible to have both tf trees of the two Zamboni in Rviz, I looked up the transform 



using tf to find the transform from the camera link to the marker board link, of which 
the norm of the translation vector gives the ground truth depth while the quaternion 
gives the ground truth rotation. 
 
Finally, I tested my pose estimation algorithm by comparing it with the ground truth. I 
spawned two Zamboni’s with both a longitudinal and a lateral offset, teleoperated 
them with a constant speed, and kept estimating the pose of the marker board. The 
output of the algorithm contains three entities: one is the transform from the marker 
board frame to the camera frame, one is the norm of the translation vector (which is 
equivalent to the distance from the camera to the origin of the marker board frame), 
and one is the interpolated average depth. The interpolated average depth is calculated 
as follows: (1) when there are at least four markers detected on the marker board, pick 
out four of them that are as far from each other as possible, which means ideally the 
four markers picked out should be on the four corners of the board; (2) generate a 
binary mask that is a contour using the center positions of these four markers; (3) 
interpolate the depth image (which must be already aligned with the RGB image) 
using the binary mask and calculate the average of the interpolated depth image to get 
the depth estimate of the board. The reasoning behind the interpolation is that ideally I 
want the depth estimate to be based on the distance from the camera to the center of 
the board, which is the origin of the board link defined in URDF. However, there 
must be situations when the center of the board is occluded so we cannot simply 
hardcode the center of the board to be the position used to retrieve depth in the depth 
image. We need to adaptively change the region we use to retrieve depth values from 
the depth image based on the marker detections we got from the RGB image.  
 

 
Figure 2. Pose Estimation of the Leader in Gazebo 



Figure 2 shows the output of the pose estimation algorithm. In the terminal, there are 
three outputs per image callback, “Ground Truth Depth” is the norm of the translation 
vector of the transform we looked up using tf. “Interpolated Average Depth” is the 
estimated depth based on the interpolated depth image as explained above. 
“Translation Norm” is the estimated depth directly based on the translation vector 
from the pose estimation of the board. Ideally, these three values should be the same. 
In practice, I found sometimes the interpolated depth images have outliers that lower 
the average depth, and I am planning to try calculating the median instead. The 
translation norm based on the pose estimation of the board in RGB image gives the 
closer result to the ground truth. The little difference between the two is caused by 
different origin of the board frame used. In calculating ground truth, tf takes the center 
of the board as the origin of the board frame, as defined by the URDF, while OpenCV 
takes the bottom left corner of the board image as the origin of the board frame as its 
convention.  
 

 
Figure 3. Marker Board Pose Estimate Validation using D435i 

 

D435i Calibration and Validation 
I calibrated Intel RealSense D435i by following the calibration guidelines using 
realsense-viewer. I tested my pose estimation algorithm by first validating the norm of 
translation output, which is equivalent to depth, against a tape measure between the 
camera and the printed marker board. Figure 3 shows the setting for the validation. 
The printed marker board is the same board image used in the simulation above. Then 
I validated the rotation output by (1) attaching the marker board to a hinge that can 
rotate 90°, e.g. the red toolbox with a lid in Figure 3; (2) calculating the rotation 

https://dev.intelrealsense.com/docs/self-calibration-for-depth-cameras


difference between the current rotation matrix and the rotation matrix after rotating 
the marker board by 90° around the axis of the hinge; (3) converting the rotation 
difference into axis angle and verify the angle was indeed 90°. In this way, we 
successfully avoided any artificial errors such as the marker board is not perfectly 
parallel with nor in the center of the image frame, because what the axis angle gives is 
always around the axis of rotation. Finally I tested and validated the depth camera by 
interpolating the depth image using individual marker detections’ locations, same as 
in simulation.  

Challenges 
The major challenges I have encountered when implementing the tasks above include: 

1. Getting ground truth position of links in Gazebo 
Rather than hardcoding the coordinate or any transform, we wish to neatly 
obtain the information of interest using functionalities provided by Gazebo or 
ROS. Initially we tried to listen to the topic “gazebo/link_states” which 
publishes pose messages of each link in Gazebo. However, Gazebo lumped all 
fixed joints in a sequence (and hence links connected by them) to be a single 
joint, which makes impossible looking up the index of the camera link by 
subscribing to the topic. I solved this by looking up tf transforms between the 
camera link and the base link, and multiplying the transform by the ground 
truth position of the lumped base link that is able to be indexed in messages 
from “gazebo/link_states” topic. Similarly I used this approach to get the 
ground truth position of the marker board link.  
 

2. Marker board wall scaling issue 
Originally our marker board model in Gazebo was auto-generated using an 
open-source script. The board seemed to work at first but when we take the 
norm of the translation vector from the pose estimate, the scale was 
inconsistent with how we generated the board image. In particular, our board 
image is generated to be 390 by 390 pixels, and the side length of the box 
model, to which the board image is attached, is set to be 1 meter in Gazebo. 
Therefore, if we divide the norm of the translation vector, which is in pixel, by 
390, we should get the depth value in meter, but this was not the case using 
our original marker board model. My solution was to remake the marker board 
URDF by making the board image as a custom Gazebo texture so that we can 
directly render a plain box using the material tag in its URDF definition.  
 



3. Texture can’t be loaded in Gazebo by any means 
This happened when I changed the definition of a Gazebo texture in an 
existing texture file. When I relaunched any model using that updated texture, 
it wouldn’t reflect in Gazebo. I haven’t found any solution to this so far. I have 
verified that my gazebo_media_path environment variable includes the path to 
the updated texture file. The current solution was to make any change to the 
launch file and it will “force” Gazebo to rebuild its resources folder and be 
able to loop up the updated texture.  

Teamwork 
• Nick worked on the RC car platform, including figuring out how to steer the 

wheels and send speed commands to motors, as well as making possible 
controlling the RC car by either manual input or computer command.  

• Rathin worked on the path following module in Simulink. He designed and 3D 
printed necessary mounts for the sensors on the RC car. He also mapped the 
steering angles on servo to the real steering angles for the RC car. 

• Jiayi worked on the leader velocity estimation algorithm using EKF based on 
its position and heading angle relative to the leader. She also designed and 
published waypoints including positions, heading angles, and velocities for the 
vehicle controller tests as well as PID tuning.  

• Yilin worked on the dynamics parameters of the Zamboni URDF so that they 
were as close to a real Zamboni as possible. He tuned PID parameters in ROS 
Controller to smooth the teleoperation on the Zamboni in Gazebo. He also 
integrated waypoints loading and pure pursuit controller, Rathin’s work, to 
realize path following in Gazebo simulation along with Rviz visualization.  

 

Plans 
Before next progress review, I will help integrate the leader velocity estimation 
algorithm, developed by Jiayi, with my leader pose estimation part. After that, we 
would be able to integrate all subsystems and demonstrate a basic leader follower 
system in simulation. I will also work on leader detection using D435i on the RC car 
in a dynamic environment.  
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