
Table of Contents 

Individual Progress .......................................................................................................2 

Challenges .....................................................................................................................6 

Teamwork ......................................................................................................................7 

Plans ..............................................................................................................................7 

 

 

Figure 1. Leader and Follower are Launched in Gazebo 

 

 

  



Individual Progress 

During the past few weeks, I focused on solving the errors in the transform between 

board frame and camera frame returned by my pose estimation algorithm. The 

accuracy of this transform is crucial because all of the following subsystems, such as 

velocity estimation and waypoint generation (based on leader’s position), depend on 

it. In addition, I calibrated the IMU in RealSense D435i in reality, making sure it is 

equivalent to the Gazebo IMU plugin currently used by the localization subsystem.  

 

Figure 2. Coordinate Systems (Right-Handed) 

 

Improving Accuracy of Leader Pose Estimation 

To avoid the snowball effect when error accumulate along the system architecture, the 

pose estimation of the leader must be accurate enough so that there will be more 

leniency for the following subsystems that depend on the output of it, such as leader 

velocity estimation and waypoint generation. Therefore, when we found the pose 

returned by my algorithm was not satisfactory enough, I tried the following measures 

to debug its inaccuracy: 

1. I started with reading multiple documentations to confirm the unconventional 

coordinates used by OpenCV for the camera and the board. This was 

important when we tried to chain the transform from the follower base to the 

leader base. The coordinate frames of different links are drawn in Figure 2. If 

the position of the leader relative to the follower is defined as “front”, all of 

the links in ROS tf tree (as consistently defined by our URDFs) have 𝑥 

facing forward, 𝑦 facing left and 𝑧 facing upward. These include follower 

base link, camera link, board link, and leader base link. The camera frame 



used in OpenCV has 𝑥 facing right, 𝑦 facing down and 𝑧 facing front. The 

marker board used in OpenCV has the origin of its frame at the bottom left 

corner of the board, with 𝑥 facing right, 𝑦 facing up, and 𝑧 facing out of 

the board. The correct chain of transforms to estimate the leader position 

based on the follower position (obtained from localization subsystem) and the 

camera-board transform (obtained from perception subsystem) is as illustrated 

by the arrows.  

2. I tested the same algorithm using the camera to estimate an ArUco board in 

reality to be sure if the error is caused by the sensor plugin in simulation. The 

accuracy was satisfactory in reality but it was not convincing because the 

ArUco board was printed on an A4 paper, which made it too small to be 

recorgnized when placing it 2 meters away the camera. This was far from 

representative of the simulation, so I printed a marker board that is 42 inch by 

42 inch with the help of SCS Poster Printing. And by next PR, we will use this 

to test the accuracy of the pose estimation algorithm by placing it in front of 

the camera with a distance that mimics a leader-follower setting.  

3. I published the tf between the camera and the board using the estimated pose, 

so I could visualize it in RViz and compared it with the RobotModel. The 

result was very different from the ground truth, which was supposed to be at 

the bottom left corner of the marker board.  

4. I assumed the estimated translation vector was scaled incorrectly from pixels 

to meters, so I normalized the translation vector, and scaled it using the 

interpolated average depth value (explained in the previous ILR, which is 

essentially a mask over the depth image to get the average depth in the mask, 

where the mask is generated by interpolating detected markers in four corners 

in the RGB image). This did not solve the error either. 

 

We thought the error was caused by some unknown issues of the RealSense Gazebo 

plugin we used, so I decided to include Velodyne Puck, VLP-16, into simulation to 

estimate the translation vector instead (explained in next section). However, on the 

day before this PR, I found we made a mistake when interpreting the transform 

between the board and the camera. The OpenCV documentation for ArUco stated that 

the returned pose is a transform from the board frame to the camera frame, which is 

equivalent to the board’s position in the camera frame. We interpreted it as the other 

way around, the camera’s position in the board frame. Therefore the transform drawn 

in RViz was never close to the bottom left of the board no matter what we tried. After 

we corrected this, the tf of the estimated board frame was exactly drawn at the bottom 

left of the board in RViz, as shown in Figure 3. The top right image is the axis drawn 



using the drawAxis function in OpenCV, which directly takes the estimated pose and 

the camera intrinsics/distortions as input. The tf drawn in RViz is after applying the 

chain of transforms starting from the follower base link as explained before.  

 

Figure 3. Estimated Marker Board Frame 

 

Pose Estimation Enhancement using Velodyne Puck 

The initial motivation to use Puck in our project was due to the translation errors, but 

it turned out to be a mistake on our end when calculating the transform between the 

camera and the marker board. The other motivation to use Puck is because when the 

leader is taking a turn, the marker board disappears from the FoV of the camera on the 

follower. This can be slightly mitigated by placing the camera to the rear of the 

follower but the trade-off will be half of the image is occluded by the snow tank at the 

front of the follower. Using a 360-degree LiDAR will solve this problem because it 

will continually output point cloud of the leader even if it’s making a U-turn.  

 

Our team will use Velodyne’s Puck LiDAR sensor, VLP-16, in our project, so I 

started off by adding the Puck into our simulation environment. I used Velodyne 

Simulator package to insert a Gazebo plugin of Puck into the follower’s URDF, which 

publishes ROS PointCloud2 message with the same structure (𝑥, 𝑦, 𝑧, intensity, ring, 

time) as the real sensor. To manipulate the point cloud in preparation for leader pose 

estimation, I made a pipeline as follows: 

https://bitbucket.org/DataspeedInc/velodyne_simulator/src/master/
https://bitbucket.org/DataspeedInc/velodyne_simulator/src/master/


1. Conversion: The ROS PointCloud2 message is first converted to a Point Cloud 

Library (PCL) XYZRGB format, with the “ring” field converted to a 

corresponding RGB value.  

2. Filtering: The point cloud is downsampled using voxel grid filter in PCL. 

Then it will be filtered based on three different axes using the passthrough 

filter in PCL. In our case, I filter it along 𝑧 from −ℎ to 0 where ℎ is the 

height of the Puck from the ground, along 𝑥 from −5 to 10 which 

approximates the farthest longitudinal distance between the leader and the 

sensor, and along 𝑦 from −5 to 5 which approximates the farthest lateral 

distance.  

3. Plane Segmentation (Optional): if the filtering along 𝑧 still gives a lot of 

points on the ground, then the point cloud is segmented using a RANSAC 

plane segmenter in PCL. The inliers will be the plane while the outliers will be 

the follower, the leader, and any random obstacles.  

4. Clustering: The PCL XYZRGB point cloud is converted to a XYZ point cloud 

first because Euclidean clustering does not need RGB information. Then an 

Euclidean clustering is applied to the points, which in the backend uses a Kd-

tree to find the nearest neighbors (further details are well explained here). 

After getting a list of clusters, I assign a color to each cluster of points. 

5. Conversion: The downsampled, filtered, and clustered point cloud is converted 

back to a ROS PointCloud2 message which includes the corresponding cluster 

color as a PointField. The RViz can now show the clustered data with colors.  

The current progress has been summarized in Figure 4. The left image shows the 

original point cloud published by the Puck, while the right image shows the point 

cloud after processing, where there’re only two cluster of points remaining. One (in 

yellow) belongs to the leader and the other (in cyan) belongs to the follower.  

 

Figure 4. Point cloud data before and after processing 

https://medium.com/@ajithraj_gangadharan/euclidean-clustering-for-lidar-point-cloud-data-8603f266b246


IMU Calibration 

I, together with Rathin, calibrated the IMU on RealSense D435i by following the 

steps in the manual. 

 

Challenges 

The major challenges I have encountered when implementing the tasks above include: 

1. Figuring out the correct transform between elements 

As mentioned in the previous section, the conventions for the coordinate 

system are different in ROS tf tree and in OpenCV. Therefore, to make sure 

we get the correct chain of transforms from the follower base to the leader 

base, we need to figure out the coordinate systems of each link defined in tf, as 

well as the coordinate systems of the camera and the marker board used in 

OpenCV. Most importantly, the pose returned by the ArUco library is the 

transform from the board frame to the camera frame, which is the board’s 

position viewed in the camera frame. The mistake we made on this led to 

hours spent on debugging the algorithms which are actually correct. 

2. Coarse collision box of the leader causes inaccurate point cloud 

The size of the mesh file for the leader is extremely large, which makes it 

impossible to be loaded as a collision geometry in Gazebo. Hence, we use a 

single box geometry as both ice resurfacers’ collision element. This will not 

cause any problem in most scenarios, but when we add the LiDAR that 

essentially shoots lasers and receives them after they bounce off a “collidable” 

surface, the problem occurs. The point cloud around the leader becomes a 

single cuboid which doesn’t tell the actual translation between the Puck and 

the marker board. The solution is to manually add more collision boxes in the 

URDF. However, note that there will be no such a problem when testing 

everything in real life because we no longer to need to approximate the 

collision box.  

3. PCL requires a steep learning curve 

This starts off by setting up the correct PCL library for a specific Python and 

Ubuntu version. Since there’s no active maintainer of the Python binding to 

PCL, different approaches have to be used to install python-pcl in different 

environments. To install a working PCL library in my Python 2.7 in Melodic, I 

went through dozens of posts and issues in the GitHub community with trial 

and error. In addition, because the visualization tool kit (VTK) in my Ubuntu 

is inconsistent with the PCL installed, I can’t visualize PCL data using the 

https://www.google.com/search?q=realsense+d435i+imu+calibration&oq=imu+realsense+d435i+cal&aqs=chrome.1.69i57j0i22i30.5286j0j7&sourceid=chrome&ie=UTF-8


PCL visualization library. The solution is to convert the point cloud to a ROS 

PointCloud2 message and visualize it in RViz when debugging the algorithm.  

Teamwork 

• Nick continued to work on the hardware. He installed the encoder onto the RC 

car and tuned the wheels so that the car can move straight. He also completed 

waypoint testing with Rathin 

• Rathin spent a lot of efforts in the PDS assignment which will be used for the 

RC car power distribution. He validated his Stanley controller on the RC car. 

• Yilin managed to control two Zamboni ice resurfacers in Gazebo 

independently with keyboard. He also developed wheel odometry and fused it 

with IMU accordingly, all in simulation.  

• Jiayi managed to visualize both paths of the leader and the follower in RViz 

(the former is the ground truth while the latter is calculated based on leader’s 

pose and velocity). She also got familiar with the teb_local_planner and 

move_base packages in ROS navigation stack.  

Plans 

Before next progress review, I plan to solve the issue that the marker board disappears 

from the camera FoV when the leader is taking a turn. I can think of two ways 

approaching this: (1) continue to use the LiDAR and find the alignment pose of a 

predefined leader point cloud in the scene, which can be accomplished by the PCL 

library shown here (this requires the calibration between camera and lidar, which is 

provided by the ROS package lidar_camera_calibration) (2) add another RealSense 

D435i and form a “⋀” with the current one so that both fields of view can add up to 

174° (this also requires the calibration between two cameras, which is instructed in 

this article).  

 

In addition, I will work together with the team to set up Jetson, validating all the 

connections between Jetson and sensors, and the ones between Jetson and Arduino. 

https://pcl.readthedocs.io/projects/tutorials/en/pcl-1.11.0/alignment_prerejective.html#id7
https://github.com/ankitdhall/lidar_camera_calibration
https://www.intelrealsense.com/how-to-multiple-camera-setup-with-ros/

	Individual Progress
	Challenges
	Teamwork
	Plans

