
MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 7

Team
Rathin Shah

Nick Carcione

Yilin Cai

Jiayi Qiu

Kelvin Shen

Author
Kelvin Shen

Sep 29, 2022

Table of Contents

Individual Progress ...2

Challenges ...5

Teamwork ..5

Plans ..5

Individual Progress

During the past two weeks, I have been working on two tasks mainly. One is obstacle

detection, and the other is integration of the previous perception system onto ATV.

Obstacle Detection

Obstacle detection is one last subsystem in our stack that is not implemented. We

originally planned to pass the detection result into the planner such that the follower

will avoid the obstacle accordingly. However, after discussion about the project scope

with one of the stakeholders, Zamboni, we were informed that avoiding obstacles by

contouring is not eligible because it might cause defective ice resurfacing. Therefore,

we decide to stop both the leader and follower whenever there’s an obstacle blocking

the way. To this end, all we need for our system is the relative location of the obstacle

to the follower’s ego. Once we output the relative location, we check whether it

intersects the trajectory that the follower is following, and if so, we stop the follower

while the driver of the leader vehicle will be notified and stopped as well.

In order to calculate the relative position of obstacles, we have two options. The first

is to leverage the depth stream on RealSense D435i that we are already using, fuse it

with outputs of any object detector such as YOLO, and unproject into 3D to get

obstacles’ relative positions. However, the depth accuracy of D435i will drift

noticeably after 3 to 4 meters away from the camera, known as RMS error, which

impacts the D435 model more than the D415 model due to D435’s hardware design.

In our use case, the longitudinal offset between the leader and the follower will be 6

meters, and obstacles can appear anywhere between, which makes D435 an unreliable

choice of depth estimation. The other option is to calibrate camera and LiDAR, filter

out points that are associated with outputs of any object detector, and directly get

obstacles’ relative positions. This option will be much more robust than purely relying

on D435i because the range of VLP-16, the LiDAR we will use, can go up to 100

meters. In addition, taking the second approach expands our knowledge as well as

hands-on experience of sensor fusion.

Since the extrinsics of the LiDAR and the camera are unknown on the ATV, we use

the lidar_camera_calibration package to calibrate VLP-16 and D435i. In particular, it

finds a rotation and translation that transform all the points in the LiDAR frame to the

monocular camera frame. It finds the rigid body transformation between the camera

frame and the LiDAR frame by corresponding manually annotated checkerboard’s

edges in point clouds with the detected checkboard in images. As shown in Figure 1,

we use an online available dataset coming with the package that contains the point

cloud associated with the image of two ArUco markers in order to experiment and get

familiar with the package. Given the point clouds of two boards, we manually

annotate each edge of the board in clock-wise order starting from the top-left, which

shows up in the top left window in the screenshot on the right. Then the package uses

3D-3D point correspondences and gives a closed form solution of the rigid body

transform between LiDAR and camera frame.

Figure 1. LiDAR-Camera Calibration

The next step will be calibrate our own sensor set after we properly mount D435i onto

the ATV. And then we plan to use YOLOv4 for object detection in image frame, and

filter the point clouds associated with detected objects. Finally we will remove the

points associated with the leader vehicle based on the ArUco detection and output the

centroids of the remaining points to the downstreaming planner.

Perception Test

Last semester we found the leader-following is very unstable because the perception

subsystem is not robust against noise. Therefore, starting this semester, we start

stress-testing RealSense so we can understand its limits better and complement them

with any post-processing accordingly.

First we placed the ArUco marker board 6 meters away from the camera per the

performance requirement. Then we tested the marker detection performance by

moving the board or moving the camera respectively. When moving the camera, we

tried rotating the camera as well as translating longitudinally. We found the detection

was lost only when the camera was rotating aggressively, i.e., when there was a large

angular acceleration (shown in Figure 2), which leads to significant motion blur in the

image. This is crucial to our system because the pose estimation completely relies on

a robust detection of the marker; the marker won’t be detected even if it gets a little

blurred. Any fiducial marker library is based on the correspondences obtained from

the clearly detected corners. This explained why the RC car in SVD was not able to

follow the leader smoothly or converge back to the steady state once it started

wobbling.

There are three ways that we can combine together to resolve this. First, we will

increase the marker size relative to the board size so that even under motion blur, the

corner correpsondences are still legible. Secondly, we find that we can increase the

frame rate of the camera by switching from the RGB stream to the near-infrared

stream. In SVD we used the RGB stream of D435i for detection, which consumed a

lot of bandwidth, supported only 60 FPS as its highest frame rate and easily caused

jello effect that distorted markers. On the other hand, near-infrared stream that

publishes monochrome images requires much less resources than RGB and it supports

as high as 90 FPS in normal resolution (840x480). Since RGB info is useless to either

pose estimation or obstacle detection in our use case, switching to the near-infrared

stream is a matter of course. Lastly, we plan to implement EKF for pose estimation to

account for any loss of detection even when a higher FPS is used. In particular, during

the prediction step, we will extrapolate the leader pose based on the history of

estimated poses and the timestamp, while in the update step, we will correct the

prediction using the successful marker detection.

Figure 2. Left: Successful marker detection. Right: Losing detection under motion blur

The other alternatives we have discussed to resolve loss of detection are: (1) use

learning-based recognition methods to detect the marker even when the image is

blurred. Deep learning can indeed increase the robustness of detection, but it is not

usable in our case because even if the position of the marker is detected inside the

image, the fiducial marker library is still unable to estimate the pose based on its pre-

known correspondences. (2) use ATV’s onboard camera which is designed for long-

range detection. However, it is a legacy product and hence not scalable to Zamboni.

Plus, the highest FPS of the onboard camera, Multisense S21, can only go up to 60

FPS, which is less promising than the IR stream on D435i.

Challenges

The major challenges I have encountered are:

• Increasing robustness of marker detection is not a trivial task. As explained in

the previous section, our downstreaming subsystems largely depend on a good

estimation of leader’s relative pose, without which the planner will easily lose

track, start wobbling and diverge from the leader’s trajectory. To resolve it, I

have brainstormed six options that are covered above and come up with the

plan that involves little reworking and computation cost.

• In order to decide which set of sensors we should use as well as what available

algorithms we can find to detect obstacles, I have done a simple trade study

between purely camera-based approach versus LiDAR-camera fusion

approach.

Teamwork

• Nick actively designed mounts necessary to mount camera onto ATV as well

as both camera and LiDAR onto Zamboni. He also took charge of the project

management where he updated the WBS and JIRA issues frequently.

• Rathin coordinated with Isuzu and Zamboni to ship the vehicle. He tested the

localization stack of the ATV using ros bag files provided by the original ATV

project members.

• Yilin reviewed papers to come up with potential methods for leader-following

controller that maintains a constant offset. He worked with Jiayi to develop the

PID longitudinal controller.

• Jiayi implemented the PID controller to maintain constant longitudinal

distance. She also wrote scripts that publish steering and velocity commands

to ATV. She continued to coordinate with Isuzu to get latest updates on their

DBW conversion.

Plans

Before the next progress review, I plan to calibrate our VLP-16 and RealSense D435i

after we mount the camera onto ATV. I also plan to finish the fusion of LiDAR-

camera by using YOLOv4 for object detection. Simultaneously, I will work on the

EKF to improve robustness of the leader pose estimation.

	Individual Progress
	Challenges
	Teamwork
	Plans

