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Individual Progress 

During the past two weeks, I have been working on two tasks mainly. One is obstacle 

detection, and the other is integration of the previous perception system onto ATV.  

 

Obstacle Detection 

Obstacle detection is one last subsystem in our stack that is not implemented. We 

originally planned to pass the detection result into the planner such that the follower 

will avoid the obstacle accordingly. However, after discussion about the project scope 

with one of the stakeholders, Zamboni, we were informed that avoiding obstacles by 

contouring is not eligible because it might cause defective ice resurfacing. Therefore, 

we decide to stop both the leader and follower whenever there’s an obstacle blocking 

the way. To this end, all we need for our system is the relative location of the obstacle 

to the follower’s ego. Once we output the relative location, we check whether it 

intersects the trajectory that the follower is following, and if so, we stop the follower 

while the driver of the leader vehicle will be notified and stopped as well.  

 

In order to calculate the relative position of obstacles, we have two options. The first 

is to leverage the depth stream on RealSense D435i that we are already using, fuse it 

with outputs of any object detector such as YOLO, and unproject into 3D to get 

obstacles’ relative positions. However, the depth accuracy of D435i will drift 

noticeably after 3 to 4 meters away from the camera, known as RMS error, which 

impacts the D435 model more than the D415 model due to D435’s hardware design. 

In our use case, the longitudinal offset between the leader and the follower will be 6 

meters, and obstacles can appear anywhere between, which makes D435 an unreliable 

choice of depth estimation. The other option is to calibrate camera and LiDAR, filter 

out points that are associated with outputs of any object detector, and directly get 

obstacles’ relative positions. This option will be much more robust than purely relying 

on D435i because the range of VLP-16, the LiDAR we will use, can go up to 100 

meters. In addition, taking the second approach expands our knowledge as well as 

hands-on experience of sensor fusion.  

 

Since the extrinsics of the LiDAR and the camera are unknown on the ATV, we use 

the lidar_camera_calibration package to calibrate VLP-16 and D435i. In particular, it 

finds a rotation and translation that transform all the points in the LiDAR frame to the 

monocular camera frame. It finds the rigid body transformation between the camera 

frame and the LiDAR frame by corresponding manually annotated checkerboard’s 

edges in point clouds with the detected checkboard in images. As shown in Figure 1, 

we use an online available dataset coming with the package that contains the point 



cloud associated with the image of two ArUco markers in order to experiment and get 

familiar with the package. Given the point clouds of two boards, we manually 

annotate each edge of the board in clock-wise order starting from the top-left, which 

shows up in the top left window in the screenshot on the right. Then the package uses 

3D-3D point correspondences and gives a closed form solution of the rigid body 

transform between LiDAR and camera frame.  

  

Figure 1. LiDAR-Camera Calibration 

 

The next step will be calibrate our own sensor set after we properly mount D435i onto 

the ATV. And then we plan to use YOLOv4 for object detection in image frame, and 

filter the point clouds associated with detected objects. Finally we will remove the 

points associated with the leader vehicle based on the ArUco detection and output the 

centroids of the remaining points to the downstreaming planner.  

 

Perception Test 

Last semester we found the leader-following is very unstable because the perception 

subsystem is not robust against noise. Therefore, starting this semester, we start 

stress-testing RealSense so we can understand its limits better and complement them 

with any post-processing accordingly.  

 

First we placed the ArUco marker board 6 meters away from the camera per the 

performance requirement. Then we tested the marker detection performance by 

moving the board or moving the camera respectively. When moving the camera, we 

tried rotating the camera as well as translating longitudinally. We found the detection 

was lost only when the camera was rotating aggressively, i.e., when there was a large 

angular acceleration (shown in Figure 2), which leads to significant motion blur in the 

image. This is crucial to our system because the pose estimation completely relies on 

a robust detection of the marker; the marker won’t be detected even if it gets a little 

blurred. Any fiducial marker library is based on the correspondences obtained from 

the clearly detected corners. This explained why the RC car in SVD was not able to 



follow the leader smoothly or converge back to the steady state once it started 

wobbling.  

 

There are three ways that we can combine together to resolve this. First, we will 

increase the marker size relative to the board size so that even under motion blur, the 

corner correpsondences are still legible. Secondly, we find that we can increase the 

frame rate of the camera by switching from the RGB stream to the near-infrared 

stream. In SVD we used the RGB stream of D435i for detection, which consumed a 

lot of bandwidth, supported only 60 FPS as its highest frame rate and easily caused 

jello effect that distorted markers. On the other hand, near-infrared stream that 

publishes monochrome images requires much less resources than RGB and it supports 

as high as 90 FPS in normal resolution (840x480). Since RGB info is useless to either 

pose estimation or obstacle detection in our use case, switching to the near-infrared 

stream is a matter of course. Lastly, we plan to implement EKF for pose estimation to 

account for any loss of detection even when a higher FPS is used. In particular, during 

the prediction step, we will extrapolate the leader pose based on the history of 

estimated poses and the timestamp, while in the update step, we will correct the 

prediction using the successful marker detection.  

      

Figure 2. Left: Successful marker detection. Right: Losing detection under motion blur 

 

The other alternatives we have discussed to resolve loss of detection are: (1) use 

learning-based recognition methods to detect the marker even when the image is 

blurred. Deep learning can indeed increase the robustness of detection, but it is not 

usable in our case because even if the position of the marker is detected inside the 

image, the fiducial marker library is still unable to estimate the pose based on its pre-

known correspondences. (2) use ATV’s onboard camera which is designed for long-

range detection. However, it is a legacy product and hence not scalable to Zamboni. 

Plus, the highest FPS of the onboard camera, Multisense S21, can only go up to 60 

FPS, which is less promising than the IR stream on D435i.  

 



Challenges 

The major challenges I have encountered are:  

• Increasing robustness of marker detection is not a trivial task. As explained in 

the previous section, our downstreaming subsystems largely depend on a good 

estimation of leader’s relative pose, without which the planner will easily lose 

track, start wobbling and diverge from the leader’s trajectory. To resolve it, I 

have brainstormed six options that are covered above and come up with the 

plan that involves little reworking and computation cost.  

• In order to decide which set of sensors we should use as well as what available 

algorithms we can find to detect obstacles, I have done a simple trade study 

between purely camera-based approach versus LiDAR-camera fusion 

approach.  

Teamwork 

• Nick actively designed mounts necessary to mount camera onto ATV as well 

as both camera and LiDAR onto Zamboni. He also took charge of the project 

management where he updated the WBS and JIRA issues frequently.  

• Rathin coordinated with Isuzu and Zamboni to ship the vehicle. He tested the 

localization stack of the ATV using ros bag files provided by the original ATV 

project members.  

• Yilin reviewed papers to come up with potential methods for leader-following 

controller that maintains a constant offset. He worked with Jiayi to develop the 

PID longitudinal controller.  

• Jiayi implemented the PID controller to maintain constant longitudinal 

distance. She also wrote scripts that publish steering and velocity commands 

to ATV. She continued to coordinate with Isuzu to get latest updates on their 

DBW conversion.  

 

Plans 

Before the next progress review, I plan to calibrate our VLP-16 and RealSense D435i 

after we mount the camera onto ATV. I also plan to finish the fusion of LiDAR-

camera by using YOLOv4 for object detection. Simultaneously, I will work on the 

EKF to improve robustness of the leader pose estimation.  
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