
MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 8

Team
Rathin Shah

Nick Carcione

Yilin Cai

Jiayi Qiu

Kelvin Shen

Author
Kelvin Shen

Oct 13, 2022



Table of Contents 

Individual Progress .......................................................................................................2 

Challenges .....................................................................................................................5 

Teamwork ......................................................................................................................5 

Plans ..............................................................................................................................6 

 

  



Individual Progress 

During the past two weeks, I have been working on two tasks mainly. One is onboard 

LiDAR camera calibration, and the other is improving pose estimation results. 

 

LiDAR Camera Calibration 

In the last progress review, we were able to run the LiDAR camera calibration 

package using provided data. However, last time we did not set up the necessary 

environment nor did we mount the camera onto the appropriate position on ATV. 

Therefore, our major achievement this time was the correct setup of the calibration 

and we successfully calculate the extrinsics between camera and LiDAR using the 

automatic calibration package.  

  

Figure 1. Left: sensor mount position. Right: calibration setup 

 

In Figure 1, we show our setup. The left image illustrates how we mount the 

RealSense D435i camera relative to the LiDAR. Note that we will only use the 

bottom LiDAR in our project because the top one is originally installed by the other 

team to get a dense point cloud representation of the ground plane, which in our case 

is not useful. Also note that the bottom LiDAR we use is upside down, which implies 

that we need to provide a correct initial rotation for the calibration package to work 

properly. In particular, the package works by first rotating the point clouds into the 

camera frame through the provided initial rotation matrix. Therefore, without 

providing a reversed relative rotation between camera and LiDAR, the package is not 

able to converge even given annotations. The setup also involves measuring the board 

size, the marker size and the margin of the marker. To make sure we can clearly see 

the edges of the board in the filtered point cloud (bottom left window in the right 

image of Figure 1), we should place the boards as detached from other objects nearby 

as possible. Ideally, we should hang them in the air from an invisible string, as the 

example given in the package documentation. In the filtered point cloud, we don’t 

have a clear top and bottom boundary, which is one thing we must improve during 

calibrating LiDAR-camera on the Zamboni by rethinking about the setup.  



 

To start iterative LiDAR-camera calibration using 3D-3D point correspondences, we 

mark each edge of the board. Each board have 4 line segments and need to be marked 

from leftmost board to the rightmost board. We draw a quadrilateral around the line of 

points that we believe correspond to an edge of a board in the grayscale image. After 

annotating all the line segments, the rigid-body transformation between the camera 

and the LiDAR frames will be calculated with a fixed number of iterations (50 by 

default). It also calculates the Root Mean Squared Error (RMSE) between the 3D 

points viewed from the camera and the laser scanner after applying the calculated 

transformation. Given the transformation from the LiDAR to camera, we can easily 

project the image onto the point cloud.  

 

Perception Improvement 

Last semester we found the leader-following is very unstable because the perception 

subsystem is not robust against noise. In the last progress review, we discuss options 

we can improve from the hardware perspective. We ended up switching from the 

RGB stream to the monochrome stream, which not only consumes significantly less 

bandwidth but also reaches an FPS as high as 90 in a normal resolution or 300 in a 

narrow resolution. In this progress review, we improve our software to further make 

the pose estimation robust.  

      
Figure 2. L: the moment beyond which there’s no visible marker. R: the predict step predicts poses 

 

The original pose estimation (purely based on ArUco marker board) is improved in 

two ways. First, we add a predict step, which functions when there’s no ArUco 

marker detected. Loss of ArUco usually happens in two cases: (1) motion blur due to 

aggressive rotations or vibrations of the camera, (2) occlusions that block the marker 

board from the camera view especially during vehicle steering. During this predict 

step, we extrapolate linear positions by fitting curves on a fixed window of previous 

poses with optional sampling or sparcification. The sparsification helps storing a 

longer history of poses given a fixed storage size, which significantly improves the 

curve fitting result. Before fitting curves, we also tried the interp1d function from 

SciPy, which did not work well because it interpolates linear/quadratic/cubic lines 



between every two points, which is very prone to errors when the board is farther 

from the camera, producing noisier pose estimations. When it comes to rotations, 

because it’s in the SO(3) manifold rather than linear, we extrapolate the estimated 

rotation by RotationSpline from SciPy, which internally interpolates the quaternions 

based on timestamps and estimates corresponding rotation given a timestamp beyond 

the provided timestamps for interpolation. In Figure 2, we show the result of the 

predict step. The left image marks the moment where the board is no longer visible 

from the camera beyond this point, so the red odometry drawn in RViz shows the 

pose estimation results estimated directly from the ArUco board. The right image 

shows how we are able to predict the pose without any ArUco board by extrapolating 

the history of poses we have estimated. Note the translation between the board and the 

camera is around 6 meter, which is exactly the requirement for the longitudinal offset 

we will maintain between leader and follower vehicles.  

 

When the ArUco marker board is detectable, we modify the original algorithm into an 

update step (following the same naming as a Kalman Filter). During the update step, 

we have two options. On one hand, we can fuse the current state (from the previous 

predict step) with the estimated pose from ArUco. On the other hand, we can directly 

use the estimated pose from ArUco. The first option suffers from the problem of 

accumulation of errors even with covariance assigned to the measurements or the 

predicted state. In our use case, we don’t care too much about the smoothness of the 

leader pose estimate; rather, we look for accurate pose estimation results as many as 

possible. To this end, we implemented the second option, which was also more 

straightforward.  

 
Figure 3. Stress test under strong vibration of the camera 

In Figure 3, we show the stress testing result where one aggressively vibrate the 

camera during pose estimation. Since we plot the board position relative to the camera 

(keeping the camera frame as reference), we can see the result is actually very 

accurate in that it never goes out of its current overall trajectory. Remember in SVD, 

the pose estimation was very unstable by producing a lot of outliers or noises along 

the way.  



Challenges 

The major challenges I have encountered are:  

• Camera LiDAR calibration package is not well maintained. A lot of bugs 

when setting it up on our own sensors were solved by going through all 

relevant GitHub issues in the community.  

• Setting up the environment for camera LiDAR calibration was challenging in 

Gascola facilities. We didn’t have a lot of tools to set up the markers and the 

boards in an ideal setting as shown in the documentation, which led to noises 

in our point cloud even after filtering. We utilized the ladders or trolleys we 

could find in the facility and built an initial setup to test the package on our 

sensors particularly.  

• Choosing the proper extrapolation method for our case was difficult. We spent 

a lot of time trying to tune the interp1d method from SciPy and tested dozens 

of times per parameter. None of them gave a robust performance because we 

eventually found it worked by interpolating every two point in the history 

instead of interpolating globally. Therefore, this problem immediately led us 

to switching to the curve fitting idea, which worked very well.  

Teamwork 

• Nick updated Zamboni mount designs and the camera mounts onto the ATV. 

He brainstormed an initial ATV brake-by-wire design with Rathin and Jim 

Picard. He was also involved in the localization tests and lateral controller 

testing at Gascola. 

• Rathin brainstormed the ATV brake-by-wire design as well. He was actively 

involved in testing the localization algorithm and the lateral controller. 

• Yilin led the localization tests and waypoint following controller tests on 

ATV. He worked with Jiayi on the longitudinal controller algorithm 

improvement. He also provided a lot of help when Kelvin tested and improved 

the perception algorithm. 

• Jiayi integrated the longitudinal controller with other subsystems in simulation 

and tested the longitudinal controller when taking turns. She wrote waypoint 

following scripts for lateral controller testing on ATV. She tested the lateral 

controller with the team on ATV. 

 



Plans 

I plan to project the image onto the point cloud and start running YOLOv4 to finish 

the obstacle avoidance. I also plan to integrate the improved perception algorithm 

onto the system and tested it on the ATV. In addition, I will decide how many 

cameras we will eventually need by testing the sufficiency of the current horizontal 

FoV when the leader vehicle is turning.  
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