Carnegie

©
TH! Mellon
AOBOTIcs Lniversity
INSTITUTE

Individual Lab Report
MRSD Project Course |
Spring 2023

Shreyas Jha
Team E: OuterSense

Teammates: Atharv Pulapaka, Dhanesh Pamnani, Jash Shah,
Ronit Hire

ILRO1
Feb. 8, 2023

Contents

TaTo [V o [V F | I =Y o 2U=T oo o USSR 2
TaTo [V o [V | W o oY 4 Y] SRR 2
SENSOrs AN MOTOE LA ..coueiiiiiieiie ettt ettt s st s st 2

L7 T 013 o] o T=IN o0 o] =Y X PPNt 3

(00 1= 11T =R 4
TEAMWOIK ..ttt ettt ettt ettt e st esaee s at e s ae e eae e et e emt e e et e abeesbeesaeesanesanesmeeeneeenbeenrees 4

o] T ST RUOTPT PP PSPPSR 5
Quiz —Sensors and Motor CONLIrol 1ab.......cooii i s 6
Reading a datasheet - ADXL335 aCCeIEIrOMELENuuiiiiiiee ittt e e e e re e e e e e e eannnes 6

YT =g T= I ele g Yo [T o 1o =SSR 7

e 1T T o =SSP 7

(@ - 1 0] oL PP P PP PPPPPPPPPPPPPPPPPRE 7
(60701 i o LTS PTPUSTOPRRTPRRTOt 7

F AN o] 01T e | USRS 9
Appendix A: Code for control of stepper motor via potentiometer.........ccccovveieieieieeciee e, 9
Appendix B: Integrated code for sensors and mMotor 1ab..........ccoeeciieiiiiiii e 10

l|Page

Individual Lab Report

Individual Progress
Sensors and Motor Lab

| worked on interfacing the potentiometer and stepper motor with a microcontroller
board Arduino Mega 2560 (Figure 1 depicts the setup). The potentiometer is an analog
sensor that was used as an input device in the setup to control the motion of the stepper
motor. The potentiometer has 3 pins which were connected to +5V, GND, and an
analog input pin on the microcontroller. By turning the knob on the potentiometer, the
effective resistance through the potentiometer varied, resulting in a change in the
voltage input provided to the microcontroller. Arduino Mega can accept up to 5V of
voltage input on the analog pin, and this is read as an 8-bit value, effectively ranging
from 0 to 1023. Based on this input, the change in the relative position of the
potentiometer was calculated and sent as a command to the stepper motor. The
stepper motor was a NEMA17 variant and was powered by a DRV8825 motor driver.
The motor driver received commands from the microcontroller to move one step at a
time in a particular direction via the step and direction pin outputs. The step length of
the stepper motor could be controlled using the MO, M1, and M2 pins on the motor
driver, and by default it was set at 1.8 degrees. The code is available in Appendix A.

Figure 1. Stepper motor and potentiometer interfaced with Arduino Mega

| also worked on integrating the individual pieces of code snippets written by all team
members into one single executable code to be written on the microcontroller. This
involved a state machine to switch between the sensor-based motor control and the
GUI input-based motor control modes. In the sensor mode, all the sensor readings

2|Page

(potentiometer, ultrasonic distance sensor, IR sensor, and temperature sensor) were
continuously read and published to the GUI interface. If the distance measured by the
IR sensor was less than 35cm and the temperature was below 80F, the servo motor
would continuously sweep between 0 and 90 degrees. If the distance measured by the
ultrasonic sensor was less than 7cm the stepper motor would spin continuously with
step lengths of 1.8 degrees. Finally, the speed and direction of the DC motor were
controlled by mapping the potentiometer reading to a corresponding RPM and direction
of rotation for the DC motor. In the GUI mode, specific commands from the GUI were
written to a data structure containing all the required parameters to select and drive the
motors, using which appropriate methods to control different motors were invoked. The
sensor readings were also continuously streamed to the GUI. The integrated code is
available in Appendix B. The entire team setup for the sensors and motor control lab
demonstration is shown in Figure 2.

Figure 2. Team presentation setup for the sensors and motor control lab

(Picture credits — Atharv Pulapaka)

Capstone Project

| have primarily worked on the electronic hardware and embedded system for the RC
Car. The first step was to study the datasheets of all the components to identify the
interfacing opportunities (power ratings, baud rates, and communication protocols) of all
the components. | studied the batteries and their chargers (originally purchased NiMh
battery, 3S LiPos from the inventory, NiMh charger, and iMax B6AC charger), IMUs
(UMY orientation sensor, and Razor 9DOF IMU), microcontroller boards (Arduino Mega,
Arduino Uno, Teensy 3.2, Teensy 3.6, Teensy 4.0, Raspberry Pi Pico WH, and
Raspberry Pi 4B), motor (Velieon BLDC motor) and electronic speed controllers (VESC

3|Page

and JMotors ESC), original servo motor on the car for steering control, hollow shaft
quadrature encoders, camera ICs to serve as an optical flow based velocity sensor,
ESP Wifi modules and real-time clock ICs.

| have completed the rudimentary control of the BLDC motor via the Arduino Mega,
control the servo motor, and can read raw or processed data from the orientation
sensor. Additionally, | have also converted all batteries, chargers, and ESCs to have
appropriate male/female versions of the XT60 connectors.

Challenges

Multiple serial communication on Arduino Mega with UM7 sensor: Reading data from
the orientation sensor via a different hardware serial fails when also performing other
serial I/O tasks on the Arduino Mega. | tried debugging this in many ways by using
different baud rates, hardware and software serials, microcontrollers, etc. Potential
solutions could be to monitor and control the serial buffer or use a different supported
communication protocol.

Configuring VESC for our BLDC motor and interfacing it with the microcontroller: The
VESC is supposed to be a plug-and-play device with low-level motor control
implemented, however, | have been struggling to configure it with the suggested GUI or
reading sensor data from it on the microcontroller. It is likely that the VESC is damaged
or faulty and we plan to contact the manufacturer for support.

Teamwork

Atharv Pulapaka: For the sensors and motor control lab, Atharv worked on the
temperature sensor and a moving average filter for it, the servo motor, and the electrical
wiring for the integrated system. With respect to the capstone project, Atharv has been
primarily working on Simulink to develop initial simulations of our control architecture by
building upon existing examples for lane detection and tracking. Atharv set up the
electronic wiring for the sensors and motors lab and helped in debugging the integrated
code.

Dhanesh Pamnani: For the sensors and motor control lab, Dhanesh worked on the IR
proximity sensor, calculated it’s transfer function, and wrote the interrupt routine with
debounce for the push button. With respect to the capstone project, Dhanesh has been
owning the mechanical design, identifying vendors, machining, and assembly of the
hardware for the track and infrastructure sensing units. He helped me in soldering and
building the connectors for the electronic components for the RC Cars.

Jash Shah: Jash has been working on a pose estimation method. He and Ronit helped
me understand and integrate the code for the DC motor in the full code for the sensors
and motor control lab and connect it to the GUI.

4|Page

Ronit Hire: Ronit developed GUI and it with the rest of the code for the Sensors and
Motor lab. With respect to the capstone project, Ronit has been working on procurement
of all the components, aided in machining the mechanical hardware, partnered on the
controller simulation in Simulink, helped in developing and debugging the pose
estimation algorithm, and helped me in trying to calibrate the VESC.

Plans

My goal for the next lab demonstration is to attempt to teleoperate the RC car over
WLAN and collect IMU data from it. This will involve interfacing the ESP8266 module
with Arduino mega, calibrating the duty cycle for the BLDC motor, receiving, unpacking,
and responding to the control inputs.

5|Page

Quiz — Sensors and motor control lab

Reading a datasheet - ADXL335 accelerometer
e Sensorrange: -3.6g to + 3.69g
e Sensor’s dynamic range: 7.2g
e The purpose of the capacitor Coc on the LHS of the functional block diagram on
p. 1 is to decouple the accelerometer from the noise on the power supply. It is
connected between the power supply and the accelerometer IC in parallel to one
another and creates a low impedance path for the high-frequency signals to get
shunted resulting in a clean DC signal.
e Equation for the sensor’s transfer function: Vout = 1.5V + 300 mV * a (At Vs = 3V)
e Largest expected nonlinearity error in g: 0.0216 g
e Sensor’s bandwidth for the X- and Y-axes: 1600 Hz
e Expected noise at 25Hz measurement bandwidth for X and Y axis: 945 ug
e Steps to experimentally determine the root-mean-square (RMS) noise of this
sensor:
o Take multiple sensor readings by keeping other operating conditions the
same (e.g., temperature) at regular intervals.
o Calculate the mean of all the sensor readings and subtract it from all the
readings to get a residual signal value.
o Find the square of the residual signal and take the average of all obtained
values.
o By taking the square root of the average of the squared residual values
find the RMS value of the noise
o Repeat this for each axis of the accelerometer.
o Record the sensor readings: Collect a large number of sensor readings
with constant operating conditions (e.g., temperature, humidity, etc.) over
a long period of time to ensure that the readings are statistically
significant. The readings should be taken at regular intervals to avoid
aliasing and to ensure that the noise is Gaussian.

Assumptions:

o There is white gaussian noise — it has a normal distribution and
consecutive sensor readings are independent.

o There is no aliasing effect and sufficient samples are collected.

o The noise value is stationary, and its distribution doesn’t change over
time.

6|Page

Signal conditioning
Filtering
e Problems with moving average filter:

o It has an inherent lag which scales with the window size. For example, if
we take the average of 200 samples, the reading will take time to reach
the true state being measured.

o Itis not robust to outliers and large outliers can skew the average values.

e Problems with median average filter:
o Itis computationally expensive and requires sorting the data for each
sample.
o It might miss capturing correct readings where a large change occurred as
it finds the median value in the window. This is a problem when trying to
preserve the high-frequency components of the signal.

Op amps
e Case 1: Uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V
output and 1.0V should give a 5V output)
o V1 will be the reference input and V2 will be the input voltage.
o Using a non-inverting configuration, R#/Ri = 1, Vrer= -3V.

e Case 2: Uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V
output and 2.5V should give a 5V output)
o This calibration is not possible as it would require a negative net ratio of R#/R;,
resistance cannot be negative.

Control
e To implement a discrete version of PID control, calculate error ‘e’ after each time
step duration of ‘t’ seconds.

o Erroris the difference between the desired position and current position.

o Proportional term is the product of the proportional gain and the current
error.

o Derivative term is the product of the derivative gain and rate of change of
error (the difference between the current error and previous error divided
by the time between them).

o Integral term is the product of the integral gain, cumulative sum of errors
since start and the total time elapsed since start.

e To speed up the sluggish system | would use the proportional term and increase
the proportional gain to reduce the rise time of the system.

7|Page

e To reduce the steady state error, | would use the integral term and increase the
integral gain to compensate the accumulated error. This will drive it towards the
desired position.

e To reduce the overshoot, | would use the derivative term and increase the
derivative gain to dampen the oscillations; effectively a smaller control input
would be generated closer to the desired position.

8|Page

Appendix

Appendix A: Code for control of stepper motor via potentiometer
#define pot_pin Ae

#define stepper_step pin 11

#tdefine stepper_dir_pin 10

const int stepper_step_size = 1.8;

int pot_prev = 0;

float stepper_change;

void setup()

{
Serial.begin(9600);
pinMode(pot_pin, INPUT);
pinMode(stepper_step_pin, OUTPUT);
pinMode(stepper_dir_pin, OUTPUT);
pot_prev = get_pot();

void loop()
{

//Every two seconds, move the stepper motor proportional to the change

potentiometer reading
stepper_change = pot_prev - get_pot();
stepper_change = map(stepper_change, -1023, 1023, -360, 360);
pot_prev = get_pot();
stepper_control(stepper_change);
delay(2000);

int get_pot()
{return analogRead(pot_pin);}

void stepper_control(float stepper_pos)
{
if (stepper_pos > 9)
digitalWrite(stepper_dir_pin, HIGH); //rotate in positive direction
else
digitalWrite(stepper_dir_pin, LOW);

stepper_pos = abs(stepper_pos);

while(stepper_pos > 0)

{
digitalWrite(stepper_step_pin, HIGH);
delayMicroseconds(2000);
digitalWrite(stepper_step_pin, LOW);
stepper_pos -= stepper_step_size;

1

in

9|Page

Appendix B: Integrated code for sensors and motor lab
//Arduino Mega - external interrupt pin 2,3,18,19,20,21

#define pi 3.1416

//Push button as E-stop interrupt for all motors
#define push_estop_pin 18

//Push button as state machine -- sensor based control and GUI
#tdefine push_state pin 21

#tdefine stepper_step pin 11
#define stepper_dir_pin 10
const int stepper_step size

#tdefine servo _pin 9 //PWM pin

#tinclude <Servo.h>

Servo myservo

#tdefine IN1 1
#tdefine IN2 5
#tdefine PWM 4

//Quadrature
t#tdefine ENCA
t#tdefine ENCB

#tdefine VMAX
#tdefine VMIN

// PID gains
float kp_rpm
float kd_rpm
float ki_rpm

float kp_pos
float kd_pos

.
J

2

en

3 // Quadrature encoder A pin - Interrupt
2 // Quadrature encoder B pin - Interrupt

11.

-1

coder

7

1.7

0.001;

0.0005;

30;
0.001;

10| Page

float ki_pos = 0.001;

// motor modes
char dc_motor_mode = 'P';

long EncoderCount = 0;

volatile unsigned long count = 0;
unsigned long count_prev = 0;
float theta, RPM, RPM_d;

float theta_prev = 0;

int dt;

float RPM_max = 103;
int POS = ©;

float e;

float e_prev=0;

float e int=0;

float e_int_prev=0;

float V = 0.1;

unsigned long t;

unsigned long t_prev = 0;

bool first time = true;
bool switch_dc_motor_mode = false;

//IR sensor (Analog) -- Transfer function (10cm - 80cm range)
#include <SharpIR.h>

#define IRPin A® //Analog pin

#tdefine IRmodel 20150

SharpIR mySensor = SharpIR(IRPin, IRmodel);
//Ultrasonic sensor

#define ultrasonic_echo_pin 6

#tdefine ultrasonic_trigger_pin 7
//Temperature sensor (Analog)

#tdefine temperature pin Al //Analog pin
float temp filter[10];

#tdefine pot _pin A2
bool e_stop; //STOP ALL MOTORS WHEN TRUE
bool state_machine; //FLIP ON TRIGGER - false is sensor control | TRUE is GUI

control

11| Page

bool transmit = false;

//Variables
struct vars

{

}s

float pot;

float ir_distance_cm;

float ultrasonic_distance_cm;
float temperature;

vars varj;

struct gui_mot_commands

{

intl6_t stepper_pos;
intl6_t servo_pos;
intl6_t dc_val; //Ir then this is RPM -> velocity control else run pos control

with dc val

}s

char control_type; //R or P

gui_mot_commands gui_mc;

void setup()

{

Serial.begin(9600);

pinMode(push_estop pin, INPUT);
attachInterrupt(digitalPinToInterrupt(push_estop_pin), estop, FALLING);
delay(200);

pinMode(push_state pin, INPUT);
attachInterrupt(digitalPinToInterrupt(push_state_pin), change mode, FALLING);

pinMode(stepper_step_pin, OUTPUT);
pinMode(stepper_dir_pin, OUTPUT);

myservo.attach(servo_pin,1000,2000);

//https://www.arduino.cc/reference/en/libraries/servo/attach/

[/====--====- dc motor config
pinMode (ENCB, INPUT PULLUP);
pinMode (ENCA, INPUT_PULLUP);
pinMode(IN2, OUTPUT);

pinMode (IN1, OUTPUT);

12 |Page

cli();

TCCR1A = 0;
TCCR1B = @;
TCNT2 = ©;

OCR2A = 12499; //Prescaler = 64
TCCR2B |= (1 << WGM22);

TCCR2B |= (1 << CS21 | 1 << CS20);
TIMSK2 |= (1 << OCIE2A);

sei();

gui_mc.control_type = 'R';
gui mc.dc_val = 20;
[[=====mmmmmmmm o -

pinMode (temperature pin, INPUT);
pinMode(IRPin, INPUT);
pinMode(ultrasonic_trigger pin, OUTPUT);
pinMode(ultrasonic_echo pin, INPUT);
pinMode(pot_pin, INPUT);

pinMode(LED_BUILTIN, OUTPUT);
digitalWrite(LED_BUILTIN, HIGH);
transmit=Ffalse;
//establish_connection();

//Initialize var
e stop = false;
state_machine = false;

for(int i1=0;i<10;i++)
{ temp filter[i] =get temperature();}
¥

void send _data()

{
if(transmit)
Serial.write((byte*)&var, sizeof(var));

void establish_connection()
{
bool rec = false;
while(!rec)
{
if(Serial.available()>0)

{

13 |Page

char inp = Serial.read();
if(inp=='S') // request to start data
{
transmit=true;
digitalWrite(LED BUILTIN, LOW);
Serial.write('A'); //connection acknowledged, next byte will be data
delay(100);
rec=true;

//ISR 1
void change_mode()
{//Serial.println("here");
static unsigned long last_interrupt_time_mode = ©;
unsigned long interrupt_time_mode = millis();
if (interrupt_time_mode - last_interrupt_time_mode > 200)

{state_machine = !state machine; }
last_interrupt_time_mode = interrupt_time_mode;
}

void estop()
{
static unsigned long last_interrupt_time_estop = 0;
unsigned long interrupt_time_estop = millis();
if (interrupt_time_estop - last_interrupt _time estop > 200)
{ e_stop = le stop; }
last_interrupt_time_estop = interrupt_time_estop;

}

void servo _control(int servo_pos)

{

myservo.write(servo_pos);

void stepper control(int stepper_pos)

{
if (stepper_pos > 0)
digitalWrite(stepper_dir_pin, HIGH); //rotate in positive direction
else
digitalWrite(stepper_dir_pin, LOW);

14 |Page

stepper_pos = abs(stepper_pos);

while(stepper_pos > 0)

{
digitalWrite(stepper_step_pin, HIGH);
delayMicroseconds (2000);
digitalWrite(stepper_step_pin, LOW);
stepper_pos -= stepper_step size;

}s

int get_pot()
{

return analogRead(pot_pin);

}

int get_ir_distance()
{

return mySensor.distance();

}

int get_ultrasonic_distance()

{
digitalWrite(ultrasonic_trigger_pin, LOW);
delayMicroseconds(2);
// Sets the trigPin on HIGH state for 10 micro seconds
digitalWrite(ultrasonic_trigger pin, HIGH);
delayMicroseconds(10);
digitalWrite(ultrasonic_echo_pin, LOW);
// Reads the echoPin, returns the sound wave travel time in microseconds
double duration = pulseIn(ultrasonic_echo_pin, HIGH);
// Calculating the distance
float distance = duration * 0.034 / 2;
return distance;

}
float get_temperature()
{
int total = ©;
for(int i = 0;i<9; i++)

{ temp_filter[i] = temp_filter[i+l];
total += temp_filter[i];
}
temp_filter[9] = analogRead(temperature_pin)* 0.48828125;
total += temp_filter[9];

15|Page

return total/10;

void ISR_EncoderA() {

bool PinB
bool PinA

digitalRead(ENCA);
digitalRead(ENCB);

if (PinB == LOW) {
if (PinA == HIGH) {

EncoderCount++;
¥
else {
EncoderCount--;
¥
}
else {

if (PinA == HIGH) {
EncoderCount--;

}

else {
EncoderCount++;

}
}

void ISR _EncoderB() {

bool PinB
bool PinA

digitalRead(ENCB);
digitalRead(ENCA);

if (PinA == LOW) {
if (PinB == HIGH) {
EncoderCount--;
}
else {
EncoderCount++;
¥
¥

else {

16 |Page

if (PinB == HIGH) {
EncoderCount++;
¥
else {
EncoderCount--;
}
}

void readEncoder() {

int b = digitalRead(ENCB);
if (b > 9) {
POS++;
}
else {
POS--;
}
}

void setMotor(int dir, int pwmVal, int pwm, int inl, int in2) {
analogWrite(pwm, pwmVal);
if (dir == 1) {
digitalWrite(inl, HIGH);
digitalWrite(in2, LOW);
¥
else if (dir == -1) {
digitalWrite(inl, LOW);
digitalWrite(in2, HIGH);
}
else {
digitalWrite(inl, LOW);
digitalWrite(in2, LOW);
¥
}

void WriteDriverVoltage(float V, float Vmax) {
int PWMval = int(255 * abs(V) / Vmax);
if (PWMval > 255) {
PWMval = 255;
}
if (Vv > 0) {
digitalWrite(IN2, HIGH);
digitalWrite(IN1, LOW);

17 |Page

}
el

}
el

}

an

void

{

//
//
//
//
//
//
//
//
//
//

se if (V < 9) {
digitalWrite(IN2, LOW);
digitalWrite(IN1, HIGH);

se {
digitalWrite(IN2, LOW);
digitalWrite(IN1, LOW);

alogWrite(PWM, PWMval);

dc_velocity control(int RPM_d)

conditions:

count = @

count_prev = 0@ before starting
theta_prev = 0

encoder_count = @

t_prev = 0

e _prev = 0

e_int_prev = 0

e_int = 0
Serial.println(RPM _d);

if(switch_dc_motor_mode)

{

}

detachInterrupt(digitalPinToInterrupt(ENCA));

delay(100);

attachInterrupt(digitalPinToInterrupt(ENCB), ISR _EncoderA, RISING);
attachInterrupt(digitalPinToInterrupt(ENCA), ISR_EncoderB, CHANGE);
delay(500);

count = 0;

count_prev = 0;

EncoderCount = 0;

theta_prev =0;

t_prev = 0;

e _prev = 0;

e int _prev = 0;

e int = 0;

switch_dc_motor_mode=false;

if (first_time)

{

attachInterrupt(digitalPinToInterrupt(ENCB), ISR_EncoderA, RISING);
attachInterrupt(digitalPinToInterrupt(ENCA), ISR _EncoderB, CHANGE);

18| Page

first time = false;

}

if (count > count_prev)

{
t = millis();
theta = EncoderCount / 900.0;
dt = (t - t_prev);

// RPM_d = 20;

RPM = (theta - theta_prev) / (dt/1000.0) * 60;

e = RPM_d - RPM;

e int = e_int prev + (dt * (e + e_prev) / 2);
V = kp_rpm * e + ki_rpm * e_int + (kd_rpm * (e

if (V > VMAX)
{
V = VMAX;
e _int = e_int_prev;
}
if (V < VMIN)
{
V = VMIN;
e _int = e_int_prev;

WriteDriverVoltage(V, VMAX);

theta_prev = theta;
count_prev = count;
t_prev = t;
e_int_prev
e _prev = e;

e_int;

void dc_position_control(int degree)

{

// condition
//pos =0
//e_prev =
//t_prev =
//e_int = @
// Serial.println(degree);

(%]
(%]

- e _prev) / dt);

19| Page

if (switch_dc_motor_mode)

{
// Serial.println("here");
// remove velocity control interrupts
detachInterrupt(digitalPinToInterrupt(ENCB));
detachInterrupt(digitalPinToInterrupt(ENCA));
delay(100);
// setup interrupts for position control

attachInterrupt(digitalPinToInterrupt(ENCA), readEncoder, RISING);

// reset default states
setMotor(-1, O, PWM, IN1, IN2);

delay(500);
switch_dc_motor_mode = false;
POS = 0;
e _prev = 0;
t_prev = 0;
e_int = 0;

}

if (first_time)

{

attachInterrupt(digitalPinToInterrupt(ENCA), readEncoder, RISING);

first time = false;

}
// Serial.println(POS);

int target = degree * 100 / 360;

// time difference

long t _pos = micros();

float delta_ts = ((float)(t_pos-t_prev))/ 1.0e6;
t_prev = t_pos;

// error

e = POS - target;

// derivative

float dedt = (e - e_prev) / delta_ts;

// integral

e _int = e_int + e * delta_ts;

// control signal

float u = kp_pos * e + kd_pos * dedt + ki _pos * e_int;
// Serial.println(u);

// motor power

float pwr = fabs(u);

if (pwr > 255) {
pwr = 255;

20| Page

}

// motor direction
int dir = 1;
if (u < 9) {
dir = -1;
}
// signal the motor
setMotor(dir, pwr, PWM, IN1, IN2);
// store previous error
e prev = e;

}
void receive data()
{
if(Serial.available())
{
char inp =Serial.read();
if(inp =='1")
{

size t nb = Serial.readBytes((byte *)&gui mc, sizeof(struct
gui_mot_commands));
// Serial.println(gui_mc.control type);
// Serial.println(gui_mc.dc_val);

}
//discard everything

while(Serial.available()>0) Serial.read();
}

void loop() {
// put your main code here, to run repeatedly:
char prev_mode = gui_mc.control type;
if (e_stop)
{
Serial.println("Estooppped");
//E-stop is on
//Stop DC motor, do not move other motors
digitalWrite(IN1, LOW);
digitalWrite(IN2, LOW);

else

21| Page

{ //Serial.println(state _machine);
if (state_machine)

{
Serial.println("GUI Mode");
//Inputs from GUI
receive_data();
//Serial read
//move servo to set pos
//spin dc motor at set speed
//steppper motor change
//set dc motor to pos
//move motors accordingly
if (gui_mc.control type == 'P')
{
if(gui_mc.control_type!=prev_mode)
{
switch_dc_motor_mode=true;
¥
dc_position_control(gui_mc.dc_val);
prev_mode = 'P';
// Serial.println(gui_mc.control type);
// Serial.println(gui_mc.dc_val);
}
else if (gui_mc.control type == 'R')
{
if(gui_mc.control type!=prev_mode)
{
switch_dc_motor_mode=true;
¥
dc_velocity_control(gui_mc.dc_val);
// Serial.println(gui_mc.control type);
prev_mode='R";
}
var.pot = get_pot();
var.ir_distance_cm = get_ir_distance();
var.ultrasonic_distance_cm = get _ultrasonic_distance();
var.temperature = get_temperature();
send_data();
¥
else
{

//Inputs from Sensors
Serial.println("Sensor Mode");
var.pot = get_pot();

22| Page

var.ir_distance_cm = get_ir_distance();
var.ultrasonic_distance_cm = get _ultrasonic_distance();
var.temperature = get_temperature();

send_data();

if (var.ir_distance_cm < 35 && var.temperature < 80)
{
for(int i=0;i<90;i++)
{servo_control(i); delay(10);}
for(int i=90;i>=0;i--)
{servo_control(i); delay(10);}

while (get_ultrasonic_distance() < 7)
{stepper_control(5);};

if(var.pot>511)
dc_velocity_control(map(var.pot,0,512,-103,0));
else
dc_velocity control(map(var.pot,512,1023,0,103));
}
}
}
ISR(TIMER2_COMPA vect) {
count++;
// Serial.print(count * 0.05); Serial.print(" \t");

}

23| Page

