uterSense

Automated Driving Using External
Perception

Individual Lab Report - ILROS
April 6,2023

Team E - Outersense

Author:
Jash Shah

Team Members:

Atharv Pulapaka
Dhanesh Pamnani
Jash Shah
Ronit Hire
Shreyas Jha

@ Carnegie
THI Mellon
AosoTics Lniversity

INSTITUTE

Contents

1 Individual Progress

1.1 Perception e
1.1.1 Marker Detection
1.1.2 Embedded Systems Testing

2 Challenges
2.1 Perception
2.1.1 Marker Detection
2.1.2 Embedded Systems Testing

3 Teamwork

4 Future work

4.1 Personal

4.2 Team

U =t et

EENE S S N

o)

1 Individual Progress

1.1 Perception

As for the MRSD project I have mainly been working on the perception front. Under perception,
I worked on two facets; marker detection as well as running the perception pipeline on embedded
devices.

1.1.1 Marker Detection

The previous method for marker detection used was detecting a simple HSV-based color de-
tection algorithm with area and shape filtering. However, there were a few problems with this
method,

1. Variance to light and shadow: The HSV method used for filtering color used to fail when
a small shadow or change in lighting occurred. This was because the main parameter to be
tuned was ”"H” or the Hue. Giving a very large range for this parameter is used to lead to
false positive detections whereas giving a very small range would not be plausible because
a change in any illumination would cause the detection algorithm to fail.

2. Slow detection: The perception pipeline runs on 2 different threads; tracking and detec-
tion. The detection thread runs at a slower rate than the tracking pipeline. This is done
because the tracker drifts after a few frames and the detection algorithm brings it back
or re-initializes it so that the tracking is accurate again. HSV-based filtering methods are
extremely slow and computationally inefficient to be run even at a slower rate. Hence, we
had to move away from it.

3. Fewer key points being detected by the tracking pipeline: By using the HSV detection
method, the number of key points being detected was reduced significantly, which in turn
made the velocity estimation inaccurate. Hence, we decided to pivot from this method.

As can be seen in Fig. 1, the current marker being used is a square identifier that suffers from
the aforementioned problems.

Figure 1: Current method (HSV-detection)

We decided to pivot to a more robust and fast rotation-invariant template matching algorithm
to detect the marker from a birds-eye view. The advantages of using this method were as follows:

1. Faster detection: This method enabled much faster tracking than HSV-based detection

2. Robust to changes in lighting conditions: Because the method being used was simple
template matching, there was no change due to lighting conditions, the method works on
simple gray-scale images.

This method, however, still encounters the problem of fewer key points being detected. A
better marker with more features can be used to overcome this problem. This occurs because
our track, as well as most of the elements of the car, are black. Hence, the camera is not able to
differentiate between the base of the car and the track. As shown below in Fig. 2, the current
method being used is a circular marker in a gray-scale image.

Figure 2: New method (Template-matching)

1.1.2 Embedded Systems Testing

The initial plan was to use edge computing on the infrastructure units in order to streamline data
that was being sent to the master computer. To do so, we required some form of embedded
system. We tested a range of embedded systems as can be seen in Figure 3. However, there
were a number of problems with each of the embedded systems. More information about the
challenges is in Section 2.1.2. However, the conclusion of the testing was that for the Spring
Validation Demo, we will be going ahead with computers as the edge devices, not just because
of the computing power but also because the architecture supports all the libraries and modules
we wish to use.

(a) Jetson TX2 (b) Jetson Nano (c) Raspberry Pi

Figure 3: Range of embedded systems tested

2 Challenges

2.1 Perception

There were 2 main issues that came up in the perception subsystem.

2.1.1 Marker Detection

As mentioned in Section 1.1.1, there were several problems with the previous marker detection
algorithm being used. However, I was able to solve most of them using a circular marker. Further,
another interesting problem we faced with using template-matching was that there were very few
fast algorithms that were rotation-invariant. To counter this, I used a circular marker so that it
can be detected from any angle. This workaround was used so that the marker can be used at any
yaw.

2.1.2 Embedded Systems Testing

The problems with embedded systems were as follows:

1. Architecture mismatch: The code that was written for the perception pipeline was writ-
ten on a laptop that has a 64-bit architecture. However, the Jetsons have an ARM ar-
chitecture which work on with a different protocol. The Raspberry Pi also has an ARM
architecture, but because the CPU of the RPi was a little more powerful, our code did work
to an extent on it. However, when the load increased even a little, the RPi also used to heat
up too much and drop frames.

2. Different Ubuntu and ROS Version: Officially, the Jetson Nano does not support any
version of Ubuntu after 18.04. Similarly, it is tricky to flash a stable version of Ubuntu
20 on a Raspberry Pi. This means that the only version of ROS that can work on these
systems is ROS Melodic. However, we used ROS Noetic to develop our code. Using ROS
on different versions is unnecessary and hence we avoided it altogether. Even though I
was able to get Ubuntu 20 working on both of these embedded devices, it led to problem
number 1 (Architecture mismatch).

3. Different version of OpoenCV required: The version of OpenCV and CVBridge was
also an issue and had to be built very delicately from source so that each faction of our
perception pipeline worked well. Even though this worked for a short period, it would fail
when more complicated libraries would have to be downloaded and run on different kinds
of architectures. Hence, we decided to move away from this.

3 Teamwork

As for the teamwork, we are currently focusing mainly on the integration of the entire code and
making the system run on a central node by taking feedback from perception.

* Ronit Hire: Ronit mainly worked on the perception pipeline. He wrote the base code
for the entire structure of the perception unit. He also actively worked on improving the
velocity estimation of the vehicle from a birds-eye view. Moreover, Ronit collaborated
with me to test the edge-compute devices. Furthermore, he also handled a large faction of
the logistics of the team.

* Shreyas Jha: Shreyas worked on making the VESC function with the RC car. He used
ROS to integrate commands which he would receive from the MPC block. Moreover, he
also studied documentation of VESC to make sure that the hardware is in order to stably
operate the vehicle under all conditions.

* Dhanesh Pamnani: Dhanesh worked primarily on the RC car. He built the mechanical
modules for the RC car which would house the Raspberry Pi, the VESC, and the battery.
Moreover, he also attempted to reduce the error we are currently getting from the Intel
Realsense cameras. Moreover, he developed the lane detection algorithm which is being
used to provide waypoints to the MPC.

* Atharv Pulapaka: Atharv worked on the MPC unit. He mainly worked on integration
with the perception pipeline to use data that can be used to create a closed-loop feedback
system. He also modified the MPC block to take inputs as they were being received on
the ROS topics.

4 Future work

4.1 Personal

On a personal front, I will be working on integration. Currently, there are a few problems with
the velocity block of the perception unit. I will work on making this module more stable.

1. Make the template matching algorithm more stable.

2. Develop a simple averaging filter that will make the velocity estimation of the vehicle
more stable.

4.2 Team

As for the future work of the team, we wish to achieve the following goals.
1. Integrate the perception pipeline with the controls block
2. Conduct several tests to find edge cases
3. Create filters that make the car travel much smoother than the current state

4. Work on multi-camera-based pose estimation

	Individual Progress
	Perception
	Marker Detection
	Embedded Systems Testing

	Challenges
	Perception
	Marker Detection
	Embedded Systems Testing

	Teamwork
	Future work
	Personal
	Team

