
Team: Ronit Hire, Dhanesh Pamnani, Shreyas Jha, Jash Shah, Atharv
Pulapaka

ILR10
15thNovember, 2023



Table of Contents
1. Individual Progress..............................................................................................1

2. Challenges........................................................................................................... 3

3. Team Work...........................................................................................................3

4. Future Plans........................................................................................................ 4



1. Individual Progress

At this phase of our project, the primary focus shifts towards comprehensive
integrated testing and fine-tuning of system parameters, with reduced emphasis
on design and architecture development. Our efforts are directed at executing
structured test plans aligned with the upcoming fall validation demo. Initially, we
conduct single-car testing, integrating all systems and running the vehicle in a
loop for 6 to 7 laps. Continuous monitoring of perception, state estimation,
planner, and control performance is performed throughout this phase.
Subsequently, we extend testing to include another car, ensuring that both
vehicles meet performance requirements before progressing. Scaling up, we
advance to testing with two cars in a loop, running the system for an extended
duration of 15-30 minutes. The evaluation involves scenarios with vehicles
moving at both identical and different speeds to assess system performance,
especially at intersections and during cruise control. Any deviations from desired
performance trigger parameter tuning to optimize system behavior.

1.1 Asynchronous callbacks

Figure 1 : Integrated test with 2 cars

In the control system architecture of our ROS-based system, asynchronous
operations are crucial for maintaining responsiveness and efficiency. The control
system integrates inputs from both the planning system and state estimation
system, each facilitated through their respective ROS callbacks. Notably, the
planner callback checks for cruise control and intersection modes. In addition to
these event-driven callbacks, the control system features a timed callback
responsible for executing Model Predictive Control (MPC) and publishing control
commands to the RC vehicle.



An observed anomaly arose during cruise control scenarios after multiple loop
runs. We noted instances where the trailing vehicle would occasionally receive
full-speed commands from the MPC for a one timestep (small fraction of a
second) , resulting in noticeable jerky motions when the vehicle was intended to
come to a complete stop behind another vehicle. Extensive debugging and input
monitoring revealed that the issue stemmed from a timing misalignment between
the planner callback, responsible for updating the vehicle's speed, and the timed
callback executing MPC. Specifically, the MPC occasionally processed with a
default speed set in the code before the planner callback could update it to 0 for
stopping.

To address this synchronization challenge, we implemented a threading lock
using threading.Lock() to ensure that other tasks could only proceed when the
timed callback for MPC execution or planner callback had completed. This
solution effectively mitigated the timing misalignment issue, ensuring consistent
and reliable behavior during cruise control scenarios. The lock was acquired at
the beginning of the callback and released upon completion, preventing
concurrent access to critical sections of code and ensuring proper sequencing of
operations.

The threading.Lock() in Python is a synchronization mechanism provided by the
threading module. It is used to control access to a shared resource or a critical
section of code, ensuring that only one thread can access it at a time. The basic
idea is to prevent multiple threads from simultaneously executing a section of
code that might lead to data corruption or undesired behavior.

Figure 1.1 shows track for integrated testing.

1.2 Restructure cruise and intersection checks

An unintended case surfaced when the planner unexpectedly ceased operation
due to an unrelated issue, revealing a critical scenario. In this specific situation, a
vehicle found itself within an intersection, and the planner discontinued sending
commands. The control system, designed to suspend command publication in
the absence of pose and plan inputs for safety reasons, adhered to this behavior.
However, the challenge emerged as the intersection checks were exclusively
confined to the planner callback. With the planner's functionality interrupted, the
vehicle failed to communicate its presence in the intersection to other vehicles.
Consequently, an approaching vehicle, lacking this pertinent information,



proceeded without halting, resulting in a collision with the stationary vehicle.

To rectify this situation, we concluded that the responsibility for these safety
checks should be shifted from the planner callback to the control callback,
responsible for executing Model Predictive Control (MPC) and publishing
commands. The control callback, operating continuously as a timed callback,
ensures consistent execution of critical intersection checks before generating
steering and acceleration commands from the MPC, as well as publishing them.
This adjustment ensures that the system maintains situational awareness, even
during temporary halts in specific callbacks, preventing collisions and reinforcing
safety measures within the intersection environment. For further details on the
intersection logic, please refer to our previous report.



2. Challenges

2.1MRSD project

- Currently challenges are mainly with the planner, it is a difficult task
to very accurately map the real world in the planner system. It is
important because we need to ensure the vehicle remains in the
center of the lane and does not leave lane boundaries. We are in the
process of tuning the scaling parameters to represent the real world
as closely in the map referred by the planner.

- Another challenge is with waypoints, we first have a manual run
where we drive the vehicle manually and record pose of the vehicle.
This pose data is used to create waypoints for the planner, any fault
detection with pose measurements of this manual run will cause the
planner to perform undesirably with wrong waypoints. We are finding
alternate ways to get waypoints and also conducting some sanctity
checks on the waypoints to discard wrong ones.

3. Team work

Ronit Hire: Ronit worked on ensuring perception units are able to detect and
track multiple cars. He generated unique IDs for each vehicle that helped the
control system to associate data with respective cars. He is currently working
on ensuring the perception system is more robust. We both conduct integrated
testing and check for failure cases.

Shreyas Jha: He has worked on fusing camera data with odometry and IMU
to get more accurate state estimates. He also worked in resolving the low level
RC control issues to ensure the car followed the command given by MPC. We
worked on fine tuning RC cars to follow speed and steering commands
correctly. We also conducted integrated tests to ensure system robustness.

Dhanesh Pamnani: Dhanesh and Jash developed the planner system that
gives collision free paths for controllers to follow. We tested the planner with
other systems and identified places where planner logic needed to be changed.
He is currently working on solving existing problems regarding the planner and
then will test again with other systems.



Jash Shah: Jash is working on the planning subsystem, he and Dhanesh both
are involved in planner development. We all are conducting integrated testing
and ensuring planners behave desirably. He has worked on the planner to
handle static obstacles and generate alternate paths to avoid collision.

4. Future Plan

● The next step is to add dynamic obstacles and check system
performance.

● Continue with existing testing with all systems with static obstacles and
only controlled cars to improve performance


