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1 Individual Progress

1.1 Planning subsystem

I have been working on developing a multi-layer planning architecture for our self-driving car
system. This hierarchical framework integrates high-level mission planning with low-level tra-
jectory generation and control.

Figure 1: Planning diagram

1.1.1 Mission Planner

The topmost layer is the mission planner which defines the overall route plan for the vehicle
based on destination goals. For our current system, this involves following a fixed series of
centerline waypoints along the track. The mission planner provides long-term guidance but lacks
environment details.

1.1.2 Behavioral Planner

The behavioral planner handles discrete medium-term decisions like overtaking, merging lanes,
stopping at intersections. It leverages perception to make tactical choices while conforming to
the broader mission plan. Our behavioral planner employs a finite state machine with four key
states:

• Stop: This state brings the vehicle to a complete stop when required, such as at intersec-
tions.

• Approach to Stop: This transitions the vehicle speed in a controlled manner to achieve a
stop safely.

• Follow Leader: This state maintains safe following distance from a lead vehicle using
perceived position data.

• Track Speed: In the absence of lead vehicles, this state tracks the centerline at a reference
velocity.

The planner switches between these states based on perceived environment and events from
themission plan, enabling situational tactical control. For our current structured track, the Follow
Leader and Track Speed modes predominantly govern the vehicle behavior, while the stopping
states add capabilities for future expansion.
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1.1.3 Local Planner

This module generates precise, collision-free trajectories in short time horizons, translating be-
havioral choices into continuous paths. Our local planner is based on a hybrid A* algorithm that
combines grid and sampling techniques. It plans over a local window, invoking re-planning as
needed to accommodate dynamic obstacles.

1.1.4 Velocity Planner

The velocity planner regulates speed along the trajectory from the local planner. It smooths the
profile and modulates velocity based on comfort, safety and dynamic constraints. Our system
employs Model Predictive Control for this layer.

1.1.5 Collision Checking

An additional collision checker validates the local trajectory against obstacle occupancy data
from perception, flagging any segments in collision. This allows incorporating reactive safety
into the layered planning pipeline.

1.2 Hybrid A* Algorithm Details

The Hybrid A* planner is the meat of our planner:

1.2.1 Hybrid A* Algorithm

The hybrid A* planner discretizes the continuous search space into a grid representation. This
allows systematic exploration using graph search algorithms like A*. However, a key challenge
with standard grid-based methods is the massive search space they entail, making it computa-
tionally intractable for real-time performance. This is where the hybrid approach comes in. It
introduces random sampling of the free configuration space to guide and focus the A* graph
search, avoiding exploration of irrelevant areas.

Specifically, the algorithm first initializes the grid map, defining key parameters like reso-
lution and the heuristic cost function. It then randomly samples points in the free space around
obstacles. These sampled points act as intermediate milestones that the A* search uses to guide
its exploration towards the goal. The grid search expands nodes, moving towards the samples
based on cost heuristics. Once the goal is reached, the optimal path is extracted by tracing back
the lowest cost grid nodes. A smoothing function is finally applied to remove jagged motions
resulting from the discrete grid representation.

This hybrid strategy reaps multiple advantages. The guided search based on sampling is far
more efficient than blind A* expansion. The use of a grid retains the optimality guarantees of
A* unlike other sampling planners. The balance between guided exploration and optimal graph
search makes it widely applicable for self-driving cars navigating complex environments.

1.2.2 Implementation Details

The implementation of the hybrid A* planner involved the following key steps:
First, a grid-based world representation was defined with the flexibility to configure res-

olution and other parameters. Functions to map continuous spatial positions of obstacles and
vehicles onto discrete grid nodes were written. A sampling module was created to randomly
sample points around obstacles according to a specified density. The core A* search logic was
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then adapted to integrate the sampling-based guidance during node expansions. Cost heuris-
tics combined path length estimates and proximity to samples to drive the search. Finally, a
post-processing spline-smoothing step was added to refine the raw grid path into a continuous
trajectory.

The algorithm was integrated with the Gazebo simulation environment and ROS nodes to
enable closed-loop testing. The performance was found satisfactory in efficiently computing
smooth, collision-free paths for the simulated vehicle in real-time, even in cluttered environments
with narrow passages. Further testing in the real-world is planned as the next step.

2 Challenges

Implementing a functional planning system posed several key challenges:
Firstly, integrating the planner with our custom vehicle model and map representation re-

quired significant effort. Adapting the algorithms to work with the specific constraints and co-
ordinate frames was non-trivial.

Secondly, tuning the various planner parameters like grid resolution, sampling density and
heuristic weights for optimal performance was an iterative process requiring extensive experi-
mentation and testing.

Further, meeting real-time constraints was difficult, especially for computationally expensive
searches on large grids. This needs optimizations like multi-threading, efficient data structures
and algorithmic improvements.

Another challenge was smoothing the jagged grid-based paths without compromising opti-
mality. This required developing custom smoothing techniques tailored for our system.

Finally, handling complex dynamic environments and external sensor data within the planner
for robust performance remains an ongoing research challenge.

3 Teamwork

In terms of teamwork, we collaborated closely as a team to tackle critical tasks efficiently. Each
member contributed their expertise to ensure the project’s success.

Ronit: Ronit focused primarily on the perception subsystem. He worked on removing depen-
dencies on ArUco markers to make detection more robust. Additionally, Ronit played a key role
in integration and testing of the overall system.

Dhanesh: Dhanesh’s expertise is in planning. He implemented the custom vehicle model and
map representation needed by the hybrid A* planner. We collaborated extensively on adapting
the planner and tuning it for optimal performance.

Shreyas: Shreyas concentrated his efforts on refining the state estimation module. He tuned
the parameters to achieve precise odometry from the VESC IMU. He was also instrumental in
vehicle integration and field testing.

Atharv: Atharv worked on augmenting the longitudinal control system, adapting the PID
cruise controller for maintaining safe distances. He provided important controls perspective
while integrating the planner.
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Through close teamwork, we were able to combine our complementary strengths to tackle
the various facets of this complex project efficiently.

4 Future Work

4.1 Personal

In the upcoming phases, I plan to focus on:

1. Fixing the speed issue in the planner to ensure planning at the required rate.

2. Enhancing the planner to account for static obstacles and navigate around them.

3. Rigorously testing the planner and tuning parameters to improve performance.

4. Smoothing integration of the planner with other subsystems like perception and control.

4.2 Team

As a team, our future goals are:

1. Integrating all subsystems including perception, planning and control for closed loop per-
formance.

2. Tuning the state estimation module for accurate and reliable odometry data.

3. Refining the VESC parameters and control on the actual vehicle.

4. Rigorously testing the integrated system, identifying and resolving issues.

5. Incrementally enhancing individual subsystems for better overall performance.

Through systematic teamwork, we aim to synergize our individual strengths to take the inte-
grated autonomous car platform to the next level.
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