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Abstract 

This report summarizes the work that we did on the development of a terrestrial analogue 

to an autonomous underwater vehicle capable of searching for and docking with deep-sea 

wellheads. 
 

The first part of the report describes the use case of our project. We developed search and 

precision landing which we believe to be extensible to searching in an underwater environment 

denied of GPS and any other global reference frames. 
 

The system relies on optical flow for state estimation during the search and April Tag 

recognition for localization during landing and docking.  
 

We developed a high level script in order to send waypoints to the controller based on the 

state estimation and April Tag localization. This script tied together the functionality in order to 

provide robust control. 
 
 Our data has shown that we are able to robustly control the quadcopter based on the 
state estimation from optical flow whenever the environment is controlled. Unfortunately, we 
were unable to rely on the optical flow whenever it was over the dock and the April Tag 
information was too infrequent and unreliable. 
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2. Project Description 

Wellheads are infrastructures for pumping oil and gas on the ocean floor. They are 

responsible for a large portion of the world’s oil consumption. When one of these system breaks 

down it can assume billions of dollars in damages. A prime example is the BP oil spill which had 

catastrophic effects on the BP Company and the Gulf of Mexico as a whole.  

 

Unfortunately, current maintenance and monitoring of these wellheads is expensive 

costing hundreds of thousands dollars per intervention. At pressures too deep for human to useful 

intervene, oil companies are often require a specialized ship, with a highly trained crew to deploy 

a manual ROV (remotely operated underwater vehicle) to perform a simple checkup or turn a 

valve. Due to this cost, oil companies often choose to leave well-head unmonitored until a 

problem arises, and by then it can already be too late.  

 

Seeing this pain, our team proposes an Autonomous Robotic Solution to reduce cost, 

resources, and human intervention. We will demonstrate a terrestrial analog to an underwater 

vehicle capable of autonomously searching for, identifying and docking with undersea 

wellheads. Due test resources and pool time constraint, a terrestrial analog was chosen over an 

actual AUV (Autonomous Underwater Vehicle). This terrestrial analogue will be a Quadrotor 

Drone capable of ‘swimming’ through air.  

 

Because an AUV must interact with the wellhead, the ability to dock becomes an 

extremely important functionality. An underwater environment is not conducive to high 

visualization. Being able to transmit information to the AUV through the dock would provide 

large amounts of data quickly. Stabilization during inspection will provide higher quality 

photographs to be taken. 

 

AUVs (Autonomous Underwater Vehicle) exist that can search and identify undersea 

wellheads, but none we have seen that can autonomously dock or intervene at a wellhead. AUV 

with this capability will allow for cost effective, regular maintenance and monitoring of this 

wellhead which will reduce avoidable damages and loss of resources. Figure 1 shows a pictorial 

description of the problem statement. 
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Figure 1) Visual Description of Autonomous Underwater Exploration of a Wellhead 

3. Use Case 

 The depths of the ocean floor are home to an enormous plethora of flora and fauna. In our 

times, however, manmade obstacles have joined the ranks of deep sea denizens. There may be no 

more important man made sea inhabitant than the deep sea wellhead. These objects facilitate the 

distribution of our widest used fuel source, fossil fuels.  

 

 A wellhead just like any other lies at the bottom of the sea near the gulf coast. The life of 

the undersea wellhead is one of isolation and duty. Years ago he was lovingly designed and built 

by a team of engineers. Those engineers however lost touch with the wellhead as soon they 

placed him underneath the ocean surface. It has been years since the wellhead has seen another 

metal denizen or human face. The wellhead still must do his job valiantly day in and day out, 

because the fossil fuels he carries and protects would create a catastrophe if they ever seeped into 

the ocean waters. 

 

 To most everyone else, today was like any other day, but for the wellhead, today was a 

day of tragedy. This structure has grown weak with time. The rust around his pipes is growing 

slowly, getting worse every day. He sees oil leaking from the cracks in his body, more each day. 

The wellhead is also able to provide valuable information through the dock and power to help his 

friend get home safely and with the payload. 

 

 The wellhead is afraid. He knows that the ROVs necessary to go underwater and interact 

with him are prohibitively expensive. He knows that they’ll never check on him until it is too 

late. 



7 
 

 The wellhead waits and waits and waits. He does not know this, but help is on the way. 

Suddenly one morning, an autonomous underwater vehicle comes into his vicinity. There was no 

tether connecting him to an expensive ROV ship. There was no skilled laborer operating him 

from afar. The vehicle notices the wellhead, surveys every inch, and notices the leak. The next 

day, a large team comes and saves the lonely wellhead.  

 

 The wellhead cannot believe that he and the other water denizens were saved that day. He 

believes that this is a miracle. What he does not realize is that the oil company that bought his 

new autonomous friend, bought him with the specific purpose of doing routine checks on the 

wellheads. Now the company can do routine checks in order to protect the environment and their 

legal interests. Every month the lonely wellhead receives a visit from his friend the autonomous 

underwater vehicle.  

 

  Our terrestrial analog, the drone, will start somewhere in the vicinity of the wellhead, and 

lift off to begin its search. It will perform a searching strategy until it comes across the wellhead 

as shown in Figure 2. 

 

 
Figure 2) Autonomous Searching for Wellhead 

 

It will perform a searching strategy until it comes across the wellhead. Once the drone 

thinks it has found the wellhead it will identify via a specialized tag or feature. The drone will 

then initiate its pre docking orientation and positioning as shown in Figure 3. 
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Figure 3) Wellhead Recognition and Initiating Pre-Dock Position 

 

 The drone will then proceed to dock accordingly as shown in Figure 4, and the system 

will be successfully complete. 

 

    
Figure 4) Drone in the Process of Docking 

 

4. System Level Requirements 

4.1. Mandatory Functional Requirements 

● MF1: Locate Oil/Gas wellhead infrastructure with known heading in 25m2 area 

● MF2: Autonomously maneuver to wellhead within one hour 

● MF3: Positively ID as correct wellhead with 90% confidence 

● MF4: Maintain hover position over dock within +/- 1m of dock position continuously 

● MF5: Rigidly dock in five degrees of freedom 

● MF6: Provide status feedback to user of current state at 0.1Hz 

 

Mandatory functional requirements met: 

 

 The system during testing, was robustly able to complete five out of the six mandatory 

functional requirements. 

 

 MF1: During the SVE, we may not have shown the full 25m2 area, but the system was 

certainly capable if an environment such size had been feasible. This was shown during the 

“search” phase. During this phase, the quadcopter was able to successfully maneuver its lawn-

mower search pattern completely searching the entire area specified in the global planner. 

 

 MF2: The wellhead moved around at around 0.1m/s, which is clearly enough to cover the 

search area. It made maneuvers at around 0.5m in the forward direction. This means that its path 

around a 25m2 area is 10 passes in the forward direction of 5m each which would be around a 
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55m path. The drone would be able to complete this in 550s which is much lower than our 

specified value of 3,600 seconds (1 hour). 

 

 MF3: The April Tag system is quite robust for identification, and the drone was able to 

recognize the April Tag 100% of the times it saw it. 

 

 MF4: The system was shown to accurately hover around the April Tag in a 1m area 

whenever it was servoing above it. We were able to show this in isolation and during the full 

system. 

 

 MF6: The system provided feedback on the drone’s state and identification of April Tag 

at around 2 Hz through the terminal. 

 

Mandatory functional requirements not met: 

 

 MF5: The docking hardware was capable of restricting in 5 DOFs, but the system was 

not robust enough while landing to be able to make it within the small cones that we designed. 

4.2. Desired Functional Requirements: 

● DF1: Locate Oil/Gas wellhead infrastructure in low visibility with unknown heading in 

25m2 area 

● DF2: Positively ID as correct wellhead from visual object recognition with 90% 

confidence 

● DF3: Align with dock located at known radius but unknown angle from wellhead within 

+/- 1m 

● DF4: Detect obstacles 

 

Desired functional requirements met: 

 

 DF4: System was able to detect obstacles by analyzing a point cloud. The map was 

updated at around 2 Hz. 

 

Desired functional requirements not met: 

 

 DF1: Out of scope. The vision system was not robust enough to handle degradation. 

  

 DF2: Out of scope. We did not have enough time to implement this functionality, and the 

processor was too slow to be able to process the images. 

 

 DF3: Out of scope. Not enough time. It is feasible however. 
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4.3. Mandatory Non-Functional Requirements: 

● MNF1: Provides emergency stop for system with less than one second lag 

● MNF2: Operable by a single person 

 

Mandatory non-functional requirements met: 

 

 MNF1: The system has an emergency stop switch that is nearly instantaneous located on 

the RC controller. 

 

 MNF2: The system could be run by running a simple script and then taking off manually. 

4.4. Desired Non-Functional Requirements: 

● DNF1: Reduce operator cost by at least one-half 

● DNF2: Simulate low-visibility: Unable to get visual feed beyond 3m from 

camera/quadrotor 

 

Desired non-functional requirements not met:  

 

 DNF1: Our system is clearly cheaper by at least one-half, but it is hard to quantify. The 

systems are not comparable enough 

 

 DNF2:  Vision system was not robust enough to handle degradation 

5. Functional Architecture 

 Figure 5 shows the reduced functional architecture for the team’s project. The functional 

architecture is broken down into three major sub-functions: “Locate and Identify Desired 

Wellhead”, “Move to Pre-Docking Position”, and “Dock on Wellhead”.  
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Figure 5) Simplified Functional Architecture 

 

 Figure 6 shows an expanded version of the “Locate and Identify Desired Wellhead” sub-

function. 

 

 
Figure 6) Locate and Identify Desired Wellhead Subfunction 

 

 Figure 6 clearly shows the flow of information into and throughout the sub-function. The 

main inputs to the system are:  “Camera Readings, IMU Readings, and Height Readings”, 

“General Direction of Wellhead”, and “Wellhead Description”. Internally information is passed 

between each block in the fashion of: sense, plan, and act. This block is executed on a loop until 

the robot has identified the correct wellhead. Once it has identified the wellhead, the system 

changes to the “Move to Pre-Docking Position” state as shown in the figure below. 
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Figure 7) Move to Pre-Docking Position Subfunction 

 

 In Figure 7, the flow of information for the “Move to Pre-Docking Position” sub-function 

can be clearly seen. The inputs to this sub-function are: “Camera Readings, IMU Readings, and 

Height Readings” and “Tag Information”. This tag information is for the dock. The internal flow 

of information is the same loop as the “Locate and Identify Desired Wellhead” sub-function, 

except for the stopping criteria. The stopping criteria is “in pre-docking position” which is 

determined by mandatory functional requirement 4: Maintain hover position over dock within +/- 

1m of dock position continuously. Once the robot has reached the stopping criteria it moves into 

the “Dock on Wellhead” state as shown in the figure below. 

 
Figure 8) Docking Subfunction 

 

 Figure 8, above, shows the final sub-function and state of the system, docking. Once the 

robot has reached the pre-docking position it will make its docking descent and complete its task 

of docking. The main inputs to the system are: “Camera Readings, IMU Readings, and Height 

Readings” and “Tag Information”. In our final implementation, the APRIL tag was used to 

simulate the wellhead detection. 

6. System-Level Trade Studies 

6.1. Quadcopter Platform 

 

Table 1) Quadrotor Trade Study  
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Parameter Name Weight (1,3,,9) Parrot AR Drone 2 3DR Iris+ 3DR X8+ 

Flight Time/Payload 9 2 3 5 

Existing Sensor 
package 3 5 2 2 

API 
Quality/Documentat
ion 9 4 4 4 

Wingspan 1 4 4 3 

Cost 1 5 3 1 

Hardware 
Expansibility (max 
processing) 9 1 3 5 

Community 3 5 4 4 

Hardware 
Expansibility 
(sensing options) 3 1 3 5 

 Total: 105 124 163 

 

 The three most important factors in choosing our quadcopter platform were hardware 

expansibility for max processing power,  flight time/payload capacity, and quality documentation 

and API. The three quadcopter platforms we analyzed were the Parrot AR Drone 2.0, the 3DR 

Iris+, and the 3DR X8+. 

 The quadcopter platform is integral to the success of our project. A ready made platform 

that contains all of the essential hardware will allow us to focus on the higher level algorithms 

that we want to implement. The API documentation and quality is also incredibly important; in 

order to have the time to implement our higher level algorithms, we need to have an API for the 

system that reduces the complexity of aspects of the project that are not our focus. 

 In looking at our top three choices, the API quality is top notch on all three platforms. 

3DR and Parrot are industry leaders because of their quality API system. Where the 3DR X8+ 

distinguishes itself from the pack is in the flight time/payload and hardware expansibility 

parameters.  

 In the end, our final choice was for the 3DR Iris+ over the 3DR X8+ because the 8-blade 

design of the 3DR X8+ had a high likelihood of interfering with the docking process. 4 

downward-facing blades improves the payload capacity, but actually hurts our target of docking.  

6.2 Docking Mechanism 

 

Table 2) Dock Design Trade Study 

Parameter 

Name Weight (1,3,9) 4x Funnel Dock Sliding Mesh 

Decapitated 

Pyramid C-leg on Bars 

Docking 9 3 5 2 2 
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Approach Slop 

Post-docking 

tolerance 3 4 2 3 4 

Mechanical 

Robustness (of 

dock) 3 4 3 3 3 

Cost 1 5 2 3 3 

Size of mating 

device on 

docking vehicle 9 4 4 3 2 

Weight of 

mating device 

on docking 

vehicle 9 4 4 3 4 

size/weight of 

device 3 3 2 3 3 

Complexity 

(Meche & 

Electrical) 3 5 2 4 2 

 Total: 152 146 114 111 

 

 We brainstormed initial ideas to come up with four basic mechanical structures for our 

docking mechanism. Every design we chose is passive besides the sliding mesh. In analyzing our 

weights, we came up with three aspects that are above the rest in importance.  

We felt that the docking approach slope was very important in order to make the 

precision needed to dock successfully much easier to obtain. This did indeed turn out to be the 

critical factor for our design, and we should have given it even more weight in hindsight.The size 

and weight of the mating device on the docking vehicle must be kept small in order to meet the 

physical and payloads limitations of the chosen UAV.  

 Other important considerations were robustness of dock to reduce breakage and 

complexity in order to reduce scope on our project. 

 

Schematics of our four dock designs can be seen below in Figure 9, in the following order: 

4x Funnel Dock C-leg on Bar  

Mesh Dock  Decapitated Pyramid 
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Figure 9) Dock Concept Designs 

 

 

7. Cyber-physical Architecture  

 The cyber-physical architecture, shown in Figure 10, has been broken down into five 

main parts: Infrastructures, sensors, single board computer, motor control & UAV, and user 

interface. We have organized our cyber-physical architecture based on how the systems are 

physically organized and interact.  
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Figure 10) Cyber-physical Architecture 

 

The infrastructure comprises of the APRIL tag and the docking mechanism. The APRIL 

tag consists of features that can be easily detected using image processing. These features are 

then used to estimate the pose of the robot with respect to the tag. Docking mechanism is 

designed to constrain the robot in 5 DOF. 

 

 The sensors consists of the camera, IMU, and height and optical-flow sensor. The 

downward facing camera allows the drone to view the dock and ground april tags. The IMU is 

used for the drones state-estimation. A sonar height and an optical flow sensor is also used for 

the state estimation, localization and height stabilization. 

 

 For the single board computer we have an underlying software architecture that 

implement the ‘Toaster-Wedding Cake’ model. The ‘Toaster-Wedding Cake’ model constitutes 

the flow of data and information in a sense-plan-act format. The toaster is the vertical blocks of 

perception and world mapping. The systems perceives the environment through the sensors, then 

develops a model of that environment. The wedding cake is the flow of data through the high 

level global plan to the low level local planning. This planning structure dictates the actuation the 

system will have on the environment.  

 

 The microcontroller is the hardware running the low level controller and is a part of the 

UAV. The microcontroller and UAV sections are broken into two parts. The AR.Drone2 is the 

drone we used for testing of high level searching algorithms and exists as a backup if Iris+ 

cannot perform the necessary tasks. The high level software will be run on the single-board 
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computer with information being passed to it from the wireless communication and low level 

microcontroller.  

8. System Description and Evaluation 

8.1 Subsystem Descriptions/Depictions: 

8.1.1. Infrastructure Subsystem 

 
Figure 11) Infrastructure 

Landing a quadrotor at desired a location is a hard problem because of the turbulence in 

the airflow of the thrusters when the quadrotor is close to the ground. Hence, one of main design 

criterion was to be able to tolerate large variance in pose at which the quadrotor can approach the 

dock. To meet this requirement for the docking mechanism, we are using four cones to funnel the 

quadrotor down to the desired location, as shown in Figure 11. Using this strategy we can 

tolerate larger tracking errors in our control algorithm during landing. We will be manufacturing 

a mock-up of the wellhead infrastructure in the next semester. The details of the tag are covered 

in the perception subsystem. 

8.1.2 Sensor Subsystem 

 Table 2 shows the description of the components of the sensor subsystem, and Figure 12 

shows the components of the sensor subsystem mounted on the Iris+. 

 

Table 3) Sensor Subsystem Description 
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Sensor Sony Playstation 

Eye 

PIXHAWK  PX4FLOW KIT Asus Xtion 

Pro Live 

Function Downward camera whose 

feed is used to detect the 

APRIL Tags 

Flight controller to run 

the attitude control loop 

of the quadrotor 

Sensor to provide 

visual odometry 

estimates 

Sensor to provide 

RGB-D 

Information 

Features Supports a framerate of 

120hz at 320x240 

resolution.  

 

ST Micro L3GD20 3-

axis 16-bit gyroscope 

ST Micro LSM303D 3-

axis 14-bit 

accelerometer / 

magnetometer 

Invensense MPU 6000 

3-axis 

accelerometer/gyroscope 

MEAS MS5611 

barometer 

PX4FLOW V1.3.1 

optical flow sensor 

smart camera 

compatible with PX4 

PIXHAWK flight 

controller. Used to 

obtain visual odometry 

updates 

 

 

30 Hz of VGA 

depth data with 

color information. 

Image 

 

source: 

http://amazon.com 

 
source: 

https://pixhawk.org 

 
source: 

https://pixhawk.org 

 

 
source: 

https://www.asu

s.com/us/3D-

Sensor/Xtion_P

RO_LIVE/ 
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Figure 12) Sensors 

8.1.3 World Modeling Subsystem 

 

 
Figure 13) World Modeling 

 

As shown in Figure 13, the world modelling subsystem consists of the following three nodes: 

1. Pose Estimation: This node will estimate the pose of the quadrotor in the world frame.  

2. Wellhead Detection: This node will estimate the position of the wellhead in the quadrotor 

frame. 

3. Obstacle Avoidance: This node will update the occupancy grid with the obstacles, once 

they are detected. 
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We did not focus on implementing these systems during the fall semester, however, we 

have experimented with some algorithms that will help us implement this system. The following 

are the algorithms that we explored: 

APRIL tag detection 

Reference [2] shows a library by Mike Kaess, written in C++ that detects APRIL tags and 

estimates the pose of the robot. We can use this to detect the wellhead and the docking 

mechanism. 

 

The pose estimates from the april tag are given as the april tag frame with respect to the 

camera frame. This causes the frame’s coordinates to change as the camera frame rolls and 

pitches with the movement of the quadrotor. In order to remedy this, we inverted the frame in 

order to get the quadrotor in the april tag frame. This allowed us to get a frame that is fixed to the 

april tag and does not shift with rotation. This data in practice was found to be noisy. In order to 

provide better data, we implemented RANSAC in order to filter out the noisy data. 

Lucas-Kanade based optical flow 

We can use this algorithm to estimate the velocity of the quadrotor using the camera feed. 

Scale estimation is one of the major problems with this algorithms. We are using the PX4Flow 

sensor that implements this algorithm and estimates the scale using an integrated ultrasonic 

sensor which measures the distance to the ground. After consulting last year’s MRSD teams, we 

are confident that this solution works. 

RTAB-Map 

RTAB-Map [4] is graph and node based system that uses SIFT features in order to find 

points of detection. It uses structured light in order to improve the performance of the stereo 

information. It prunes the graph based on a powerful TORO graph optimization technique in 

order to reduce computation. The algorithm uses a bag-of-words technique in order to detect 

loop closures. 

8.1.4 Planning Subsystem 

 
Figure 14) Local Planning 

 

As shown in Figure 14, we are using a 3 layered architecture for the planning. Each layer 

acts like a state machine for the layer below it. For example, the global planning starts with 
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“Search For Wellhead”, on finding the wellhead, it transitions to the “Move To Pre-Docking 

Position”. On reaching pre-docking position, it transitions to the “Attempt Docking” state. 

Similarly, “Search For Wellhead” is a state machine that uses “Take off” and “Hover in Plane” 

states. For this semester we have implemented the entire local planning and hence, most of 

tactical planning on the AR.Drone. We demonstrated this functionality in FVE by doing a lawn 

mower search using the AR.Drone. The details of this are covered in the next section. 

Local planner consists of the proportional-derivative position controller which was 

implemented in C++. We implemented the global and tactical planning nodes in python. This 

enabled us to the test the higher level code without recompiling. Hence, it decreased the time we 

took to develop and test the software once the local planner was implemented and tested. We 

leveraged the ROS Parameter server to serve as a “blackboard” of shared state variables such as 

controller gains, setpoints, and event flags which enable us to easily script behaviors for the 

entire system from nodes written in Python instead of relying entirely on hard-coded C++ 

behaviors. Using these setpoint parameters, we were able to script various movement patterns 

and conditional behaviors, including manual control of the sequence start time from the hand-

held controller as well as automatic landing after completing a search sequence.  

 

Figure 15) Hardware Subsystem 

8.1.5 Microcontroller and UAV Subsystem 

The figure 15 shows the components of hardware subsystem. The AR.Drone is reliable 

quadrotor system that we obtain from the MRSD storage at no cost to us. The AR.Drone acted as 

our initial test bed to run our high level search algorithms and code. The AR.Drone is also our 

fall back and risk mitigations if the Iris+ drone cannot perform our desired tasks. The drone does 

not require any extra hardware and is controlled via wifi from a host computer. It has a forward 

facing and downward facing cameras, and the downward facing camera doubles as an optical 

flow sensor.  

 The Iris+ drone is a commercially bought quadrotor that we are modifying to with 

sensors and a SBC. The Iris+ drone’s motors’ low level controls are commanded via Pixhawk, 

which also has a compilation of various sensors, such as 9 axis IMU, and barometers. It also 
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handles our communication to the RC controller. The SBC will be communicating to the 

Pixhawk via UART to control the drone’s movements.  

8.2. Modeling, Analysis and Testing  

8.2.1. AR Drone Odometry Estimates 

Initially we were trying to track a trajectory by doing closed loop control by using 

feedback from visual odometry based on optical flow. To evaluate the performance of our 

algorithm we moved the quadrotor in a 3x3m square, 2 times. The Figure 16 shows the result of 

our experiment. It can be inferred from the graph that we have a drift of 1m for a displacement of 

1m. Clearly, we cannot implement our lawn mower search with such a large magnitude of drift.  

 
Figure 16) X vs Y Odometry Readings From Flight Test 

 

We solved this issue by using extended kalman filters to fuse the odometry estimates with 

the motion model of the quadrotor. The kalman filter equations used by the algorithm are shown 

below in figure 17: 
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Figure 17) Kalman Filter Equations 

8.2.2. Dock Tolerance  

The A and B matrices for the motion model and the control input model were obtained by 

linearizing the quadrotor dynamics about the hover position using Taylor’s expansion. This was 

implemented using the tum_ardrone [3] API. The final result of the tracking algorithm running 

with the EKF can be seen in the video on our website. 

 
Figure 17) Docking Mechanism Compliance Test 

 

Figure 17 shows the results of our compliance test performed to validate that we meet our 

functional requirement of the docking subsystem. Figure 18 shows the images of the drop test 

performed using IRIS+ quadrotor. As shown in the figure, the docking mechanism was 

successfully able to funnel the quadrotor to the center of mechanism. 

 

 
Figure 18) Docking Mechanism Drop Test 
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8.2.3. Landing Characterization 

 During development we were successful in stabling landing within approximately 2 feet 

of the dock in a highly repeatable manner. Figure 19 below shows one such test, where we 

landed 7 out of 7 tries all within the specified circle. 

 
Figure 19) Leg locations of seven landing attempts 

 

The red circle indicates a radius of 2 feet, and each red X indicates the location of one of 

the quadcopters feet after a landing attempt. The four small black circles shows the size of the 

landing cones of the dock itself. As can be seen from the image, although we were unfortunately 

not able to land within the black circles reliably we were able to consistently land within 2 feet of 

the target location.  
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8.2.4. Control Architecture and Implementation 

 Based on optical flow and IMU updates, the Kalman filter extracts position and velocity 

estimates for measurements. Figure 20 shows the architecture of the cascaded controller which is 

used on most quadrotors. The reference trajectory is generated for the x, y, z position and yaw of 

the quadrotor. The position controller calculates the reference attitude and sends it to the attitude 

planner. The attitude planner generates a smooth trajectory to reach that reference attitude. The 

attitude controller follows this trajectory by running a PID loop.  

 
Figure 20) Control Scheme 

 

In our first attempt to implement the above architecture we were running the position and 

attitude controller on the PIXHAWK. We sent reference positions using MAVROS from the 

ODROID to the PIXHAWK over UART interface. However, gains of the PID loop running on 

the PX4 stack were too aggressive and we were not able to get stable flight. Instead of investing 

time to debug the controller which was running on the PX4 stack, we decided to implement our 

own proportional controller on the ODROID in ROS. This worked much better than the position 

controller that was running on the PIXHAWK but there was significant oscillations visible in the 

response of the system. 

 We implemented a PD controller to enable higher gains and damp the resulting 

oscillations. Figure 21 below shows the successful position and command velocity results of a 

square flight pattern with the new PD controller. The flight successfully followed the offset 

pattern (0,0) -> (+0.3, 0) -> (+0.3, +0.3) -> (0, +0.3) -> (0, 0) starting from the location (-0.28, 

0.25) using a P gain of 4 and a D gain of 1. Command velocities peaked to +/- 3 m/s, but position 

is still able to quickly reach the target setpoint with minimal oscillation. 
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Figure 21) Square flight pattern under enhanced PD Controller 

 

Position holding also exhibited very good stability with the new PD controller. As can be 

seen in Figure 22 below, we were able to maintain a very steady position of +/- 10cm over 

approximately 4 minutes. 

 
Figure 22) High-accuracy (+/- ~10cm) position hold over approximately 4 minutes 

This high positional accuracy enabled arbitrary search patterns similar to those shown in our fall 

validation experiment and gave us a good base from which to built out further functionality. 
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8.2.5. Dock Design Compliance 

 The cute and bright dock was designed with the drone geometric dimensions in mind. In 

order to leave as much marginal error as possible for docking, we decide on 10” diameter conical 

funnels that would direct the drone descents into the specific dock configuration. For ease of 

manufacturing the dock utilized commercially bought funnel and laser cut materials. The dock 

houses the drones landing gear, and constrain it in 5 DOF, when perfectly docked. The legs of 

the drone’s landing gear are funneled into the docks center. The dock is able to disperse the 

impact of the drone fall and through deformation lessen the drone impulse to ensure no abrupt 

damage is done. 

8.2.6. April Tag Localization 

 Pose estimates from the April Tag after the transformation were analyzed for accuracy 

and speed. During the analysis, it was determined that there was significant noise in the pose 

estimates. This noise was due to the poor orientation updates from the quadcopter due to the 

frequent pitching and rolling of the quadrotor that the camera was attached to. 

 

 In order to remedy this, we used RANSAC filtering in order to remove the the outliers 

from the system. 
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Figure 23) Bottom: Unfiltered April Tag Pose Estimates; Top: Filtered April Tag Pose Estimates 

 

 NOTE: Colors for x and y are flipped in the bottom plot of Figure 23. 

 

 This data shows that we were able to effectively filter out the outliers, however, the 

frequency of the updates is much lower for the filtered data. This is due to the large number of 

outliers present. 

8.2.7. Optical Flow Estimates 

 Figure 24 below shows the raw velocity updates from the PX4Flow optical flow camera. 
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Figure 24) Visual Estimates from Optical Flow Camera 

 

 Figure 25 shows the position estimates from the internal extended kalman filter onboard 

the Pixhawk microcontroller. 
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Figure 25) Position from the Internal Extended Kalman Filter 

 

 The pose updates shown in Figure 25 correspond to the quadrotor trying to maintain 

position in x and y. 

 

 These position updates are fairly stable, but overtime there is a linear drift associated with 

providing velocity updates to the extended kalman filter. We evaluated this drift in simulation as 

shown in Figure 26. 
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Figure 26) Linear Drift Associated with Velocity Updates 

 

 Figure 27 shows odometry information showcasing the drift from using optical flow vs. 

ground truth. 

 

 
Figure 27) Odometry Information vs. Ground Truth 

 

 In this Figure, the orange arrows are odometry information. The base of the arrow is the 

position, and the arrow is the velocity direction and magnitude.  
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 As can be seen, this information has a serious amount of drift over time on our system in 

real-time. 

 

8.2.8. Depth Information 

 In order to get accurate pose estimates, we wanted to use a SLAM system in order to 

localize ourselves. We utilized the RTAB-Map [4] package in order generate our map. We used 

the Asus Xtion Pro Live as our depth sensor, which provides RGB-D information using OpenNI 

to manipulate the point clouds. 

 

 Figure 28 shows the mapping information while the quadrotor was stationary and while 

being moved by hand. 

 

 
Figure 28) Mapping Information for Stationary (Left) and Moving by Hand (Right) 

 

 The information gathered was working well. The problem is that the mapping is 

incredibly slow. We were only able to get the information at around 0.5 Hz. Because this 

information was so slow, there were not enough inliers in the SIFT features to be able to get the 

transformations needed to calculate odometry information. This made the sensor and system 

unusable in our system. 

 

 We decided that we could still use the depth information for detecting obstacles. This 

way we could build a local costmap with raytracing on our point cloud data to fill and clear the 

map. We were able to get the point cloud data at around 20 Hz, and we updated our map at 

around 3 Hz. We were able to show in flight that we could accurately track obstacles in real-time 

onboard. 

 

 Figure 29 shows the costmap with the point cloud information. 
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Figure 29) Costmap with Point-Cloud Information 

 

 This showed that we could get accurate obstacle detection real-time onboard while in 

flight. 

 

8.3. SVE Performance Evaluation 

8.3.1 Spring Validation Experiment 

Needed Equipment:  

1. Iris+ with mounted sensors and computer hardware 

2. wellhead 

3. dock 

4. caution tape 
 

Operational Area:  

25m2 in B - Level Basement 
 

Test Process:  

1. Cordon off section of hallway 

2. Place wellhead at one corner of search area and dock 1m in front of the wellhead 

3. Place Iris+ on ground at opposite corner of search area facing wellhead within +/- 5 

degrees 

4. Hit START button on PC to initiate sequence 

5. Manually take off Iris+, switch to OFF_BOARD mode, and begins searching for 

wellhead (marker) 
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6. Confirm Iris+ arrives within 3 meter radius of wellhead 

7. Confirm Iris+ orients above dock in pre-docking position (within 1 meter of dock) 

8. Confirm Iris+ successfully lands in dock, constrained in 5 DOF  
 

Success Conditions / Metrics: 
 

Mandatory: 

1. Manually take off with Iris+ from ground 

2. Iris+ arrives within 3 meter radius of wellhead 

3. Dock with docking station, constrained in 5 DOF 

 

Desired:  

1. Dock constraints 5 DOF 

2. Successfully avoid obstacles 
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Figure 30 shows a schematic view of our spring semester validation experiment.  
 

In its initial condition, the drone will not be able to detect the wellhead which is outside the 

visual range of the downward facing camera, simulating the underwater environment of a real 

wellhead. It will be placed within an initial 10 degree range.  
 

 
Figure 30) Sketch of Spring Validation Experiment 

 

The drone followed a search path similar to the one sketched in blue above, and once it 
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detected the dock the drone moved to center itself over the it.  Once the drone has a stable visual 

lock on the dock with it’s downward-facing camera it executes an automatic docking sequence 

and arrives in its final docked position.  

8.4. Strong and Weak Points 

8.4.1 System Strengths: 

● Good control architecture and implementation 

As described in the previous section, our implementation of the proportional-derivative 

controller on the ODROID was pretty robust. 

● Fast development and testing cycles 

The high level functionalities were implemented in python, this reduced the development 

time because we did not need to recompile the code. Further, we set up an automated 

bash script to run all the launch files and record the data for the desired topics. This 

reduced the time required for testing. 

● Good controller environment for optical flow 

The optical flow sensor was not returning good state estimates because of shadows of the 

drone. Hence, we hung a translucent cloth above the net which served as a diffuser of the 

light and hence prevented the formation shadows. Also, we spray painted features on 

wood on the floor of the net. This provided good features for the optical flow sensors. 

● Well designed and integrated hardware system 

During testing, we had crashed the drone several times into the wall, floor and ceiling. 

Apart from the one accident before our SVE, we did not have any hardware problems 

once all the hardware development and implementation was completed. Further, our 

power system fit entirely inside the original chassis of the drone itself, reducing the need 

for delicate external components. Compact design for sensor and SBC mounting, i.e. a 

3d-printed mounting plate and careful component selection has enabled a compact, sleek 

solution for our add-on sensors and single-board computer 

8.4.2 System Weaknesses: 

● Low accuracy of docking         

Docking accuracy of the robot was very poor. This was mainly because we were not able 

to get high frequency accurate updates from the APRIL tag. By running the ARPIL tag 

detection algorithm, we were able to estimate the pose only at 7-8 hz. Further, these 

readings were very noisy, hence we implemented a RANSAC filter to remove outliers. 

This further reduced the frequency of the filtered poses that we could estimate. 

● Optical flow estimates not robust to environment changes 

As described in our strengths, we had to modify the environment for the optical flow 

sensor to work. Also, the sensor had a very narrow field of view because it was designed 

for quadrotors flying at a height greater than 20m. 
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9. Project Management 

9.1 Schedule Status 

 
Figure 31) Fall and Spring Schedule 

 

As shown in Figure 31, we have split our work time into 2-week sprints. We have a total 

of 6 of these sprints between January and the start of April, with an extra two-weeks is also set 

aside for final demo preparations.  The remaining yellow sections in the schedule above indicate 

areas where some functionality was unfortunately not completed in time for the SVE. 

 

One significant date is March 20th, at which point we decided to focus efforts on the 

Iris+ instead of the backup AR.Drone platform. In the case autonomous flight had not been 

demonstrated and a high-confidence path forwards for autonomous docking was not available by 

this point, we would have focused all work on our backup platform. 
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9.2 Budget Status 

Total budget: $4000 

Total spent to date: $3170.52 
 

Table 4) Detailed Budget for big-ticket items (over $50 total cost) 

No. Item Name / Description Unit Cost Total Cost 

1 3DR IRIS+ Quadcopter $599.99 $599.99 

1 MINNOWBOARD-MAX-DUAL $145.95 $145.95 

1 Odroid XU-4 Board $83.00 $83.00 

8 3DR IRIS+ Propellers $9.99 $79.92 

1 PX4Flow $149.00 $149.00 

2 Iris+ Battery $40.00 $80.00 

2 NicaDrone Perment Magnet $45.00 $90.00 

4 Electrically Conductive ABS/PVC $13.57 $54.28 

3 3DR Cable Pack $16.99 $50.97 

1 3DR IRIS+ Quadcopter $599.99 $599.99 

1 PX4Flow $149.00 $149.00 

1 Asus Xtion Pro Live $329.99 $329.99 

1 Odroid XU-4 Board $83.00 $83.00 

1 Intel R200 RealSense Camera $99.00 $99.00 

8 3DR IRIS+ Propellers $9.99 $79.92 

 

9.3 Risk management 

Table 5 shows our Risk Management Table, where we have tracked all of the major risks 

to our system. 

Table 5) Risk Management Table 
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 The two major risk that we identified is shown in Figure 32. 

 

 
Figure 32) Risk 16 Mitigation Strategy 

 

 This risk has been tracked and mitigated since the PDR. We were able to get a second 

AR.Drone from inventory. We are also going to be tracking this risk for the Iris+ during the 

Spring semester. During this semester, we built a second Iris+ with the full electrical hardware. 

This ensured that we were able to handle a serious breakage. During the night before the SVE, 
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we had a major breakage, whenever the quadrotor fell from the net and broke one of its arms. By 

having a second quadrotor, we were able to present our final demo. 

 

 The main risk that we tracked during  the spring semester is shown in Figure 24. 

 
Figure 33) Risk 6 Mitigation Strategy  

 

 This risk was the biggest problem in our system. We did not accurately characterize the 

main risks of the system. We believed that by working on the dock and spending the majority of 

our time on the quadcopter controls and state estimation that we would be able to get the 

precision in landing that we needed. Unfortunately, we did not take into account some serious 

issues. We did not analyze the risk that the dock itself would provide poor features for the optical 

flow sensor. This caused our state estimation to be far less robust over the dock than it was over 

the ground. We also did not take into account that the april tag updates would not be accurate 

enough. These risks should have been tracked and mitigated during the semester.  

 

 Figure 34 shows the updated Risk Likelihood-Consequence Matrix. 
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Figure 34) Risk Likelihood-Consequence Matrix 

10. Conclusions 

10.1 Lessons Learned 

 The major lessons learned during the spring semester by Team C can be summarized 

below: 

● It is difficult to communicate and get everyone on the same page 

● One person’s plan may not meet what the others in the group feel it should be 

● It is easy to get busy with other things and not deliver what you need to deliver every 

sprint. 

● It is important to accurately profile the performance and errors of sensors early. Optical 

flow is very sensitive to lighting and shadows, hence these sensors specially need to be 

tested early. 

● It is very valuable to have a single board computer with an x86 architecture because there 

can be several required packages which don’t have binaries available for ARM 

architecture. 

● It is better to leverage APIs that are popular and tested rather than implement everything 

on our own. We spent a lot of time implementing the transformations for representing 

pose estimates from APRIL tag in our local frame. We could have saved this time if we 

used the TFs in the navigation stack in ROS. 

  

 Team C found that it was often difficult to get everyone on the same page during 

meetings. Oftentimes, one person would say one thing and it would mean something completely 

different to another person. This would range from technical definitions to emotions to 

scheduling conflicts. The most detrimental miscommunications happened when technical 

definitions were not properly communicated. Often, two people would be arguing about a 

technical question without realizing that they were both on the same side. Other times, a person 

would get hung up on a simple aspect of a technical question because they were not 

understanding the definitions another team member was using. 

 

 Another form of miscommunication was during the planning stage. This would happen 

whenever the team would delegate tasks. Oftentimes, one team member's idea of what they are 

working on should look like. This can often lead to problems whenever the sprint is over. Work 

that the rest of the team felt should have been done will not get done because of this 

miscommunication. This leads to a lot of wasted effort on the part of every team member and 

could be detrimental at the later parts of the semester, whenever things get into crunch time. 

Luckily this miscommunication did not the outcome of our fall deliverables, but this 

miscommunication lead us to be less productive each sprint than we would have liked. 
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One of the major lessons that we learned is that the MRSD program can be very time 

consuming. Our technical classes require a lot of our time, and that time can often be 

miscalculated by the team. Often, work during the sprint would either go undone or half done, 

because other work cropped up for the team. If work was not essential to completing our FVE 

goals, it would always go undone. This was because we did not have a proper accountability 

system in place during the semester. 

10.2 Future Work 

 Due to the lessons the team has learned during the Spring semester, the team has come up 

with a few key aspects we would work on if project was extended: 

● Revising Optical flow sensing to ensure environment changing robustness 

● Testing and validation of subsystem performance at every milestone 

● Prepping drone for usage as MSRD legacy.  

● Showcase better relation of terrestrial analog to underwater application 

 

 Obtaining reliable optical flow readings was one of our biggest challenges this semester. 

We trusted too much in the PXFlow. The PXFlow has a narrow scope and only operates at high 

frequency. It gave us noisy data and and requires a heavily featured landscape to provide 

adequate measurements. Over the course of the semester we spent unnecessary amounts of time, 

modify the floor of flight cage to make optical flow perform better. If a flood light went off, or 

shadows from surrounding infrastructure were involved, a previously work test would perform 

horridly due to optical lack of robustness to changes in the environments. If we had more time, 

we would convert to higher grade state estimation sensor so we would be so dependent on 

finicky PXFlow. We may switch to a more beacon based, navigation system.  

 

 Test and validation of subsystem performance could have been more thoroughly done. 

One of our major flaws in the SVE was that one of subsystem the April tag rectifying node was 

not accurate and quick enough to provide the succeeding pipeline good april estimates. The 

failure of this system resulted in our in ability to dock during the demos. If we had better tested 

the frequency updates of this node as well as the accuracy of its measurement we would have 

been able to demo a working system that meet all of our requirements. If we had more time in 

the future we would stress test and validate all of our performing subsystems. 

 

 Since we must return all elements of our project to the MSRD inventory, we would like 

to leave an instruction manual for our drones so that future MSRD students might be able to put 

them to good use. 
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12. Appendices 

Appendix A: Spring Test Plan 

Table 6 identifies key capability milestones for the spring-semester Progress Reviews. 

 

 Table 6) Test Plan for Spring 
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