
Column Robotics: Team C

Critical Design Review
December 18, 2015

Job Bedford

Cole Gulino

Erik Sjoberg

Rohan Thakker

1. Abstract

This report summarizes our progress on the development of a terrestrial analogue to an

autonomous underwater vehicle capable of searching for and docking with deep-sea wellheads.

 We start-off by presenting an overall description of the project and the use case followed

by the System-level requirements. We then show the functional and cyber physical architectures

that describes how our system meets the requirements.

 Next, we show the current status of our implementation of the system along with the

project management tools that we used for planning and tracking our progress. The last part of

the report consists of the conclusions, references and appendices.

1. Abstract .. 2

2. Project Description ... 4

3. Use case .. 5

4. System-Level Requirements .. 7

4.1 Mandatory Functional Requirements: ... 7

4.2 Desired Functional Requirements: .. 7

4.3 Mandatory Non-Functional Requirements: .. 8

4.4 Desired Non-Functional Requirements: .. 9

5. Functional Architecture ...10

6. Cyberphysical Architecture ..12

7. Current System Status: ...14

7.1 Targeted System Requirements: ...14

7.2 Subsystem Descriptions/Depictions: ..15

7.2.1. Infrastructure Subsystem ...15

7.2.2 Sensor Subsystem ..16

7.2.3 World Modeling Subsystem ...17

7.2.4 Global Planning Subsystem ..18

7.2.5 Hardware Subsystem ..19

7.3 Modeling, Analysis and Testing ...19

7.4 FVE Performance Evaluation: ..21

7.5 Strong and Weak Points ..23

7.5.1 System Strengths: ...23

7.5.2 System Weaknesses: ..23

8. Project Management ...24

8.1 Work Breakdown Structure ..24

8.2 Schedule Status ..26

8.3 Test Plan ...27

8.3.1 Spring Validation Experiment ..28

8.4 Budget Status ..30

9. Conclusions ..33

9.1 Lessons Learned ...33

9.2 Key Spring Activities ..34

10. References..34

2. Project Description

Wellheads are infrastructures for pumping oil and gas on the ocean floor. They are

responsible for a large portion of the world’s oil consumption. When one of these system breaks

down it can assume billions of dollars in damages. A prime example is the BP oil spill which had

catastrophic effects on the BP Company and the Gulf of Mexico as a whole.

Unfortunately, current maintenance and monitoring of these wellheads is expensive

costing hundreds of thousands dollars per intervention. At pressures too deep for human to useful

intervene, oil companies are often require a specialized ship, with a highly trained crew to deploy

a manual ROV (remotely operated underwater vehicle) to perform a simple checkup or turn a

valve. Due to this cost, oil companies often choose to leave well-head unmonitored until a

problem arises, and by then it can already be too late.

Seeing this pain, our team proposes an Autonomous Robotic Solution to reduce cost,

resources, and human intervention. We will demonstrate a terrestrial analog to an underwater

vehicle capable of autonomously searching for, identifying and docking with undersea

wellheads. Due test resources and pool time constraint, a terrestrial analog was chosen over an

actual AUV (Autonomous Underwater Vehicle). This terrestrial analogue will be a Quadrotor

Drone capable of ‘swimming’ through air.

AUVs (Autonomous Underwater Vehicle) exist that can search and identify undersea

wellheads, but none we have seen that can autonomously dock or intervene at a wellhead. AUV

with this capability will allow for cost effective, regular maintenance and monitoring of this

wellhead which will reduce avoidable damages and loss of resources. Figure 1 shows a pictorial

description of the problem statement.

Figure 1) Visual Description of Autonomous Underwater Exploration of a Wellhead

3. Use case

 The depths of the ocean floor are home to an enormous plethora of flora and fauna. In our

times, however, manmade obstacles have joined the ranks of deep sea denizens. There may be no

more important man made sea inhabitant than the deep sea wellhead. These objects facilitate the

distribution of our widest used fuel source, fossil fuels.

 A wellhead just like any other lies at the bottom of the sea near the gulf coast. The life of

the undersea wellhead is one of isolation and duty. Years ago he was lovingly designed and built

by a team of engineers. Those engineers however lost touch with the wellhead as soon they

placed him underneath the ocean surface. It has been years since the wellhead has seen another

metal denizen or human face. The wellhead still must do his job valiantly day in and day out,

because the fossil fuels he carries and protects would create a catastrophe if they ever seeped into

the ocean waters.

 To most everyone else, today was like any other day, but for the wellhead, today was a

day of tragedy. His structure has grown weak with time. The rust around his pipes is growing

slowly, getting worse every day. He sees oil leaking from the cracks in his body, more each day.

 The wellhead is afraid. He knows that the ROVs necessary to go underwater and interact

with him are prohibitively expensive. He knows that they’ll never check on him until it is too

late.

 The wellhead waits and waits and waits. He does not know this, but help is on the way.

Suddenly one morning, an autonomous underwater vehicle comes into his vicinity. There was no

tether connecting him to an expensive ROV ship. There was no skilled laborer operating him

from afar. The vehicle notices the wellhead, surveys every inch, and notices the leak. The next

day, a large team comes and saves the lonely wellhead.

 The wellhead cannot believe that he and the other water denizens were saved that day. He

believes that this is a miracle. What he does not realize is that the oil company that bought his

new autonomous friend, bought him with the specific purpose of doing routine checks on the

wellheads. Now the company can do routine checks in order to protect the environment and their

legal interests. Every month the lonely wellhead receives a visit from his friend the autonomous

underwater vehicle.

 Our terrestrial analog, the drone, will start somewhere in the vicinity of the wellhead, and

lift off to begin its search. It will perform a searching strategy until it comes across the wellhead

as shown in Figure 2.

Figure 2) Autonomous Searching for Wellhead

It will perform a searching strategy until it comes across the wellhead. Once the drone

thinks it has found the wellhead it will identify via a specialized tag or feature. The drone will

then initiate its pre docking orientation and positioning as shown in Figure 3.

Figure 3) Wellhead Recognition and Initiating Pre-Dock Position

 The drone will then proceed to dock accordingly as shown in Figure 4, and the system

will be successfully complete.

Figure 4) Drone in the Process of Docking

4. System-Level Requirements

4.1 Mandatory Functional Requirements:

● MF1: Locate Oil/Gas wellhead infrastructure with known heading in 25m2 area

● MF2: Autonomously maneuver to wellhead within one hour

● MF3: Positively ID as correct wellhead with 90% confidence

● MF4: Maintain hover position over dock within +/- 1m of dock position continuously

● MF5: Rigidly dock in five degrees of freedom

● MF6: Provide status feedback to user of current state at 0.1Hz

Changes in mandatory functional requirements since PDR:

 The search area for MF1 was changed from 50m2 to 25m2 in order to accommodate the

area in the B-level. This is the same area that we used for the Fall Validation Experiments. This

change will allow us to test in an area that we have constant access to. It is an area that is familiar

to us and that we have some control over. The area will also be the same one that we use to test

whenever the net gets moved to, so we have some consistency in our test patterns. This will also

ensure that we have ample opportunity for tests throughout the semester.

 A performance metric was added to MF4 to specify that we want to maintain a hover

position over the dock within +/- 1m of dock position continuously. We had received some

feedback from the PDR that not all of our requirements had performance metrics, so we made

sure that we put realistic and important requirements that pushed our design forward. If the drone

can hover within +/- 1m of the dock position continuously once it has discovered the wellhead

and reached the dock position, the drone will be able to make a descent that will allow it to dock

successfully. This performance metric is what we will use to determine when we have moved

from the “get into docking position” state to the “docking” state. This metric will allow the drone

to be able to quantitatively determine when it is ready to dock. It will also ensure that the tag

always remains within the field of view of the camera.

These changes will allow us to be more effective in the spring. The changes will improve

the team’s test effectiveness.

4.2 Desired Functional Requirements:

● DF1: Locate Oil/Gas wellhead infrastructure in low visibility with unknown heading in

25m2 area

● DF2: Positively ID as correct wellhead from visual object recognition with 90%

confidence

● DF3: Align with dock located at known radius but unknown angle from wellhead within

+/- 1m

Changes in desired functional requirements since PDR:

 There were many changes to the desired functional requirements since the PDR. Many of

these changes were to add performance metrics in order to flesh out the requirements and give

the team something to test against for the Spring Validation Experiment.

 The same performance metric for MF1 was given to DF1 which defines the search are to

be 25m2. The main difference between MF1 and DF1 is that the searching is done in low

visibility with an unknown heading. This requirement has been more fleshed out since the PDR.

The team has decided that the maximum scope that we want to accomplish for the searching

subsystem is that the robot can be placed into the search area without knowing its initial state and

while having degraded vision. We believe that this will help us mimic a situation that we might

have in an underwater environment.

 The team also added a performance metric to DF2 so that we require visual object

recognition with 90% confidence. This requirement is part of our maximum scope where we do

not want to have to rely on specific tags placed on the wellhead in order to get accurate object

recognition. This performance metric is the same as the performance metric for MF3, which will

ensure that we will be able to recognize the dock with a high level of accuracy.

 A performance metric was also added to DF3 which is the same as the performance

metric for MF4. This performance metric deals with determining the pre-docking position. The

explanation of this performance metric was described above in the mandatory functional

requirements section. DF3 represents the maximum scope of the project. In the minimum scope,

the dock will be placed at a known radius and angle from the wellhead. The wellhead will be

placed in the corner of the search area, so that the robot will always be able to see it from the

front. This will allow the robot to not have to rotate during flight. Rotation during flight can

throw off optical flow in a way that may render the control of the robot ineffective. In our

maximum scope, the dock can be located within any angle from the wellhead in a known radius.

This will mean that the quadcopter will have to rotate and search all around the wellhead in order

to locate the dock. This kind of robustness to the system is a stretch goal that we have.

4.3 Mandatory Non-Functional Requirements:

● MNF1: Operable with simple graphical user interface

● MNF2: Provides emergency stop for system with less than one second lag

● MNF3: Operable by a single person

Changes in the mandatory non-functional requirements since the PDR:

 There have not been many changes to the mandatory non-functional requirements since

the PDR. Most of the mandatory non-functional requirements deal with operation. The team has

a strong desire to make operation more efficient in our solution compared to the current solution

which requires a large ship and skilled operators to run the robot. The team still desires that the

robot be operable by a single person with a simple graphical interface. This interface should be

able to provide very minimal input from the operator while the intelligence of the drone takes

over the rest of the functionality.

 The major change in the mandatory non-functional requirements is that a performance

metric was added to MNF2 which was missing before. The impetus for this change was

specifically provided by feedback from our PDR. The main reason that this requirement is so

important to the team is that it is a very slow process to go from automated to manual control in

the Iris+. It is also a very slow process to get the drone to unarm. It takes over three seconds to

get the Iris+ to disarm and go to manual control. This is too slow for our needs. In those three

seconds, the drone will surely fall and possibly endanger a person, the robot, or another’s

personal project. By providing a solution to disarm the drone with an emergency stop that has

less than one second of lag, the team will drastically improve the safety of the drone during

testing and other operation.

4.4 Desired Non-Functional Requirements:

● DNF1: Reduce operator cost by at least one-half

● DNF2: Simulate low-visibility: Unable to get visual feed beyond 3m from

camera/quadrotor

Changes in the desired non-functional requirements since the PDR:

 There have been more changes in the desired non-functional requirements than the

mandatory non-functional requirements since the PDR. Most of the changes have been to flesh

out what the team would like to accomplish in our maximum scope during the spring semester.

 The first change is that the team added a performance metric to DNF1. This metric

fleshed out that we would like to reduce operator cost by at least one-half. This performance

metric is admittedly arbitrary. Our solution will not provide everything that an Oil/Gas company

would need to replace its current system with an autonomous one. We are here acknowledging

that the overall motivation for our project is to create a system that could replace the current

systems for wellhead intervention while drastically reducing the cost of said system. We believe

that reducing it by half is a fairly obvious arbitrary requirement. It is one, however, that we may

not be able to quantify exactly for our system, which is why it is a desired and not a mandatory

functional requirement. Anything that we build will of course meet this requirement, but the

R&D required to get a complete system is an unknown to us.

 The more useful performance metric for desired non-functional requirements is for

DNF2. This metric quantifies what low-visibility will mean for our system. In an underwater

environment, low-visibility is something that any robot will face. In our maximum scope, we

would like to tackle this challenge. For the team this means that the robot will not recognize

visual information that the robot receives beyond 3m from the camera or quadrotor. There are a

few ways that this can be accomplished. One way would be to have a light on the quadrotor near

the camera while the room it searches is in darkness. This is not ideal, because it will render the

optical flow ineffective. A more elegant solution can be accomplished in software. We can use

the depth information from the RGB-D sensor on the front of the quadrotor to determine the

distance of objects in front of the quadrotor. The robot can then apply a Gaussian blur on the

images or just ignore them completely. This is can all be done in software. The team believes

that 3m will provide what we need to simulate low visibility.

5. Functional Architecture

 Figure 5 shows the reduced functional architecture for the team’s project. The functional

architecture is broken down into three major sub-functions: “Locate and Identify Desired

Wellhead”, “Move to Pre-Docking Position”, and “Dock on Wellhead”.

Figure 5) Simplified Functional Architecture

 Figure 6 shows an expanded version of the “Locate and Identify Desired Wellhead” sub-

function.

Figure 6) Locate and Identify Desired Wellhead Subfunction

 Figure 6 clearly shows the flow of information into and throughout the sub-function. The

main inputs to the system are: “Camera Readings, IMU Readings, and Height Readings”,

“General Direction of Wellhead”, and “Wellhead Description”. Internally information is passed

between each block in the fashion of: sense, plan, and act. This block is executed on a loop

until the robot has identified the correct wellhead. Once it has identified the wellhead, the

system changes to the “Move to Pre-Docking Position” state as shown in the figure below.

Figure 7) Move to Pre-Docking Position Subfunction

 In Figure 7, the flow of information for the “Move to Pre-Docking Position” sub-function

can be clearly seen. The inputs to this sub-function are: “Camera Readings, IMU Readings, and

Height Readings” and “Tag Information”. This tag information is for the dock. The internal flow of

information is the same loop as the “Locate and Identify Desired Wellhead” sub-function,

except for the stopping criteria. The stopping criteria is “in pre-docking position” which is

determined by mandatory functional requirement 4: Maintain hover position over dock within +/-

1m of dock position continuously. Once the robot has reached the stopping criteria it moves into

the “Dock on Wellhead” state as shown in the figure below.

Figure 8) Docking Subfunction

 Figure 8, above, shows the final sub-function and state of the system, docking. Once the

robot has reached the pre-docking position it will make its docking descent and complete its task

of docking. The main inputs to the system are: “Camera Readings, IMU Readings, and Height

Readings” and “Tag Information”. Again this tag information is provided for the dock and can be

in the form of an AR tag, LED or IR lights, etc. This state will continuously check to see if the

drone has docked. The internal flow of information again is passed back and forth in the plan,

sense, and act paradigm. Once it has effectively docked, it will enter a done state. The done state

will capture an image of the wellhead and transmit it back to the user. This image will be

displayed on the simple graphical interface that corresponds to manual non-functional

requirement 1.

6. Cyberphysical Architecture

 The cyberphysical architecture, shown in Figure 9, has been broken down into five main

parts: Infrastructures, sensors, single board computer, motor control & UAV, and user interface.

We have organized our cyberphysical architecture based on how the systems are physically

organized and interact.

Figure 9) Cyberphysical Architecture

 The Infrastructure consists of the main none onboard robotics systems that exist to

support the UAV. The infrastructure comprises of the april tags, the docking mechanism, and the

wellhead. The aprils tags signify then coordinate the beacon based navigation towards the

wellhead and the dock.

 The sensors consists of the camera, IMU, and height and optical-flow sensor. The

downward facing camera allows the drone to view the dock and ground april tags. The IMU is

used for the drones state-estimation. Height and follow sensor is also used for the state

estimation, but also use for the localization and height stabilization.

 For the single board computer we have an underlying software architecture that

implement the ‘Toaster-Wedding Cake’ model. The ‘Toaster-Wedding Cake’ model constitutes

the flow of data and information in a sense-plan-act format. The toaster is the vertical blocks of

perception and world mapping. The systems perceives the environment through the sensors, then

develops a model of that environment. The wedding the flow of data through the high level

global plan to the low level local planning. This planning structure dictates the actuation the

system will have on the environment.

 The motor control and the UAV are the drones itself and its control. This section are

broken into two parts. The AR.Drone2 is the drone we used for testing of high level searching

algorithms and exists as a backup if Iris+ cannot perform the necessary tasks.

 The high level software will be run on the single-board computer with information being

passed to it from the wireless communication and low level microcontroller. The User Interface

also connects to the wireless communicator and goes from the user to the single board computer

to be used for the high level software. The single board computer through the wireless

communication module also sends data to the user interface.

7. Current System Status:

7.1 Targeted System Requirements:

We decided to drive our work based on completing subsystem functionalities rather than

targeting specific requirements. Based on the targeted subsystems, Table 1 shows the status of

the functional and nonfunctional requirements that we met after the fall validation experiment.

The details of the subsystems targeted are covered in the next section. We have not met many of

our requirements because we have focused on completing the hardware setup and implementing

the subsystem functionalities. Each subsystem functionality is an independent state and

achieving all the requirements will involve running a state machine on these independent states.

Table 1) Targeted Systems Requirements

MF1. Locate Oil/Gas wellhead infrastructure with known heading in 25 m^2 area

MF2. Autonomously maneuver to wellhead within 1 hour

MF3. Positively ID as correct wellhead with 90% confidence

MF4. Maintain hover position over dock within +/- 1m

MF5. Rigidly dock in 5 DOF

MF6. Provide status feedback to user of current state at 0.1 Hz

MNF1. Operable with simple graphical user interface

MNF2. Provides emergency stop for system with less than 1 second lag

MNF3. Operable by a single person

7.2 Subsystem Descriptions/Depictions:

Figure 10 shows the subsystem status in our cyberphysical architecture.

7.2.1. Infrastructure Subsystem

Landing a quadrotor at desired a location is a hard problem because of the turbulence in

the airflow of the thrusters when the quadrotor is close to the ground. Hence, one of main design

criterion was to be able to tolerate large variance in pose at which the quadrotor can approach the

Figure 11) Infrastructure Subsystem Status

Figure 10) Current Subsystem Status

dock. To meet this requirement for the docking mechanism, we are using four cones to funnel the

quadrotor down to the desired location, as shown in Figure 11. Using this strategy we can

tolerate larger tracking errors in our control algorithm during landing. We will be manufacturing

a mock-up of the wellhead infrastructure in the next semester. The details of the tag are covered

in the perception subsystem.

7.2.2 Sensor Subsystem

 Table 2 shows the description of the components of the sensor subsystem, and Figure 12

shows the components of the sensor subsystem mounted on the Iris+.

Table 2) Sensor Subsystem Description

Sensor

Sony Playstation

Eye

PIXHAWK PX4FLOW KIT

Function Downward camera whose

feed is used to detect the

APRIL Tags

Flight controller to run the attitude

control loop of the quadrotor

Sensor to provide visual

odometry estimates

Features Supports a framerate of

120hz at 320x240

resolution.

ST Micro L3GD20 3-axis 16-bit

gyroscope

ST Micro LSM303D 3-axis 14-bit

accelerometer / magnetometer

Invensense MPU 6000 3-axis

accelerometer/gyroscope

MEAS MS5611 barometer

PX4FLOW V1.3.1 optical

flow sensor smart camera

compatible with PX4

PIXHAWK flight

controller. Used to obtain

visual odometry updates

Image

source:

http://amazon.com

source: https://pixhawk.org

source:

https://pixhawk.org

7.2.3 World Modeling Subsystem

As shown in Figure 13, the world modelling subsystem consists of the

following three nodes:

1. Pose Estimation: This node will estimate the pose of the

quadrotor in the world frame.

2. Wellhead Detection: This node will estimate the position of the

wellhead in the quadrotor frame.

3. Obstacle Avoidance: This node will update the occupancy grid

with the obstacles, once they are detected.

We did not focus on implementing these systems during the fall

semester, however, we have experimented with some algorithms that

will help us implement this system. The following are the algorithms

that we explored:

1. APRIL tag detection

Reference [2] shows a library by Mike Kaess, written in C++ that detects APRIL tags and

estimates the pose of the robot. We can use this to detect the wellhead and the docking

mechanism

Figure 12) Sensor Subsystem

Figure 13) World

Modelling Subsystem

2. Lucas-Kanade based optical flow

We can use this algorithm to estimate the velocity of the quadrotor using the camera feed.

Scale estimation is one of the major problems with this algorithms. We are using the PX4Flow

sensor that implements this algorithm and estimates the scale using an integrated ultrasonic

sensor which measures the distance to the ground. After consulting last year’s MRSD teams, we

are confident that this solution works.

3. LSD-SLAM (Large Scale Semi-direct Simultaneous Localization and Mapping)

This algorithm extends the idea of PTAM (Parallel Tracking and Mapping) but instead of

using features like SIFT/SURF which are computationally intensive, it directly uses intensity

values of the images. Hence, many research groups have been able to run this algorithm in real

time on quadrotors. We can use this algorithm to detect obstacles and correct for the drift in

position estimates that occurs due to integration of velocity estimates from optical flow.

7.2.4 Global Planning Subsystem

As shown in Figure 14, we are using a 3 layered architecture for the planning. Each layer

acts like a state machine for the layer below it. For example, the global planning starts with

“Search For Wellhead”, on finding the wellhead, it transitions to the “Move To Pre-Docking

Position”. On reaching pre-docking position, it transitions to the “Attempt Docking” state.

Similarly, “Search For Wellhead” is a state machine that uses “Take off” and “Hover in Plane”

states. For this semester we have implemented the entire local planning and hence, most of

tactical planning on the AR.Drone. We demonstrated this functionality in FVE by doing a lawn

mower search using the AR.Drone. The details of this are covered in the next section. Our focus

for the next semester is going to be to implement this on the IRIS+.

Figure 14) Planning Subsystem

7.2.5 Hardware Subsystem

The figure 15 shows the components of hardware subsystem. The AR.Drone is reliable

quadrotor system that we obtain from the MRSD storage at no cost to us. The AR.Drone acted as

our initial test bed to run our high level search algorithms and code. The AR.Drone is also our

fall back and risk mitigations if the Iris+ drone cannot perform our desired tasks. The drone does

not require any extra hardware and is controlled via wifi from a host computer. It has a forward

facing and downward facing cameras, and the downward facing camera doubles as an optical

flow sensor.

 The Iris+ drone is a commercially bought quadrotor that we are modifying to with

sensors and a SBC. The Iris+ drone’s motors’ low level controls are commanded via Pixhawk,

which also has a compilation of various sensors, such as 9 axis IMU, and barometers. It also

handles our communication to the RC controller. The SBC will be communicating to the

Pixhawk via UART to control the drone’s movements.

7.3 Modeling, Analysis and Testing

Initially we were trying to track a trajectory by doing closed loop control by using

feedback from visual odometry based on optical flow. To evaluate the performance of our

algorithm we moved the quadrotor in a 3x3m square, 2 times. The Figure 16 shows the result of

our experiment. It can be inferred from the graph that we have a drift of 1m for a displacement of

1m. Clearly, we cannot implement our lawn mower search with such a large magnitude of drift.

Figure 15) Hardware Subystem

Figure 16) X vs Y Odometry Readings From Flight Test

We solved this issue by using extended kalman filters to fuse the odometry estimates with

the motion model of the quadrotor. The kalman filter equations used by the algorithm are shown

below:

The A and B matrices for the motion model and the control input model were obtained by

linearizing the quadrotor dynamics about the hover position using Taylor’s expansion. This was

implemented using the tum_ardrone [3] API. The final result of the tracking algorithm running

with the EKF can be seen in the video on our website.

Figure 17) Docking Mechanism Compliance Test

Figure 17 shows the results of our compliance test performed to validate that we meet our

functional requirement of the docking subsystem. Figure 18 shows the images of the drop test

performed using IRIS+ quadrotor. As shown in the figure, the docking mechanism was

successfully able to funnel the quadrotor to the center of mechanism.

Figure 18) Docking Mechanism Drop Test

7.4 FVE Performance Evaluation:

For the Fall Validation Experiment, we broke it up into two parts; the Autonomous

searching demo with the AR.Drone, and the hardware setup on the Iris+ drone along with the

dock prototype. For the demo with the AR.Drone, the drone needed to takeoff perform a lawn

mower search where it snaked through a cordoned off portion of the B-level bay area, and then

returned to its original take off position. For this demo the AR.Drone needed to show reliable

state estimation and localization to determine its position in space and the desired path it must

take.

 During the FVE, the success criteria was defined in terms of speed, repeatability,

robustness, and accuracy. The necessary success conditions, as defined in our evaluation, were:

1. Successful takeoff and hover of drone under manual control.

2. Drone autonomously completes 4 search sweeps of length > 4m each.

3. Drone path during search sweeps does not overlap with itself.

4. Drone successfully avoided contact with walls of hallway.

5. Clear downward-facing video feed displayed during entire search process.

6. Full search process succeeded within 10 minutes of drone takeoff.

The demo met all the conditions successfully. During the demo, the drone took off under

manual control. The user brought the drone to the proper height. The search sequence is initiated.

The drone begins to sweep in its lawn mower search. It avoids walls and obstacles. In each

sweep it takes a unique air route avoiding overlapping itself. Throughout the whole sweep

process the drone streams video for the downward facing camera to a host computer. The full

search without setup takes an average of two minutes. The drone sweeps four times through the

length of the quarantined area. A video of the drone completing this half of the FVE can be seen

on the MRSD Team C webpage.

For the prototype dock demo and the hardware-setup on Iris+, the demo needed to

showcase the key functionalities of the sensors, SBC and the host computer. The drone video

orientation estimation must show valid orientation in roll pitch and yaw. The dock prototype

needed to constrain the drone by its landing gear in 5 degrees of freedom. The necessary success

condition for the hardware-setup and dock prototype, as defined in our evaluation, were met:

1. Iris+ constrained within +/- 1cm in all directions by dock.

 Tighter than required +/-2 cm in dock (5 DOF).

2. Valid orientation estimate and image (taken from the camera on the drone) is displayed

on the PC

 Showcased the valid orientations: (Roll, Pitch, Yaw) = (90,0,0) and (0,90,0).

3. ‘rostopic hz’ command shows 1.09Hz for downward facing camera feed:

Faster than required 0.1Hz on relevant topic on PC as specified in the

requirements.

The dock also withstood a meter high drop test with the drone. The dock cones funneled

the drones landing to the desired position. The landing gear combined with the dock cones

absorbed a great amount the impact energy. This allowed for the drone to safely land with little

abrupt impulse, protecting the sensitive components on its hardware.

7.5 Strong and Weak Points

7.5.1 System Strengths:

● Robust lawnmower search with AR.Drone

As could be seen in our FVE and promotional video, we were successful in achieving a

robust “lawnmower” search pattern with our AR.Drone platform. With this critical

requirement met, we have a high level of confidence that our fallback system will be able

to meet all “must” requirements for our system.

● Shock absorbtion quality of the dock

Our dock design has met its design criteria well, and in fact performed beyond our

expectations. One example of this is the significant shock-absorption capabilities of the

dock, which reduces the forces experienced during a hard landing.

● Well integrated power system

Our power system fits entirely inside the original chassis of the drone itself, reducing the

need for delicate external components.

● Compact design for sensor and SBC mounting

A 3d-printed mounting plate and careful component selection has enabled a compact,

sleek solution for our add-on sensors and single-board computer

7.5.2 System Weaknesses:

● Automated Iris+ control untested

Although our choice of a well-tested, widely used open source drone platform reduces

our risk exposure significantly, the fact that we have not yet demonstrated automatic

control of our Iris+ platform is a significant weakness of our current system. Unexpected

events or problems can happen, and we need to demonstrate this capability as soon as

possible.

● Small backwards drift of AR.Drone

Our AR.Drone platform shows a consistent, systematic backwards drift of its onboard

odometry during flight, which complicates the path planning code. Due to the consistent

nature of the problem this can be compensated for, however it is definitely sub-optimal.

● Jerky waypoint navigation

Our use of an overly-simple PID + waypoint-based path planning algorithm has resulted

in relatively jerky movement of the AR.Drone during its path planning. We intend to

improve the smoothness of the trajectory during subsequent quarters.

8. Project Management

8.1 Work Breakdown Structure

 Figure 19 shows the work breakdown structure for Fall, and Figure 20 shows the work

breakdown structure for Spring.

WBS Summary

Figure 19) Work Breakdown Structure for Fall

Figure 20) Work Breakdown Structure for Spring

8.2 Schedule Status

Figure 21) Fall and Spring Schedule

As shown in Figure 21, we have split our work time into 2-week sprints. We have a total

of 6 of these sprints between January and the start of April, with an extra two-weeks is also set

aside for final demo preparations.

Although we were successful in completing our demonstration and system requirements

for the fall quarter, we are behind our original timeline for working automatic control of the

Iris+. As a result, this work has shifted to the beginning of the spring semester.

One significant date is March 20th, at which point we will decide whether or not to

abandon the Iris+ and focus our efforts to the backup AR.Drone platform. If we do not have

autonomous flight demonstrated and a high-confidence path forwards for autonomous docking

by this point, we will focus all work on our backup platform.

The test plan section below breaks out our intended activities during each of these sprints.

8.3 Test Plan

Table 3 identifies key capability milestones for the spring-semester Progress Reviews.

Table 3) Test Plan for Spring

8.3.1 Spring Validation Experiment

Needed Equipment:
1. Iris+ with mounted sensors and computer hardware

2. wellhead

3. dock

4. caution tape

Operational Area:
25m2 in B - Level Basement

Test Process:

1. Cordon off section of hallway

2. Place wellhead at one corner of search area and dock 1m in front of the wellhead

3. Place Iris+ on ground at opposite corner of search area facing wellhead within +/- 5

degrees

4. Hit START button on PC to initiate sequence

5. Confirm Iris+ lifts off and begins searching for wellhead (marker)

6. Confirm Iris+ arrives within 3 meter radius of wellhead

7. Confirm Iris+ orients above dock in pre-docking position (within 1 meter of dock)

8. Confirm Iris+ successfully lands in dock, constrained in 5 DOF

Success Conditions / Metrics:

Mandatory:

1. Iris+ autonomously takes off from ground

2. Iris+ arrives within 3 meter radius of wellhead

3. Dock with docking station, constrained in 5 DOF

Desired:

1. Dock constraints 6 DOF

2. Successfully avoid obstacles

Figure 22 shows a schematic view of our spring semester validation experiment.

In its initial condition, the drone will not be able to detect the wellhead due to reduced

visibility, simulating the underwater environment of a real wellhead. It will be placed with an

initial +/- 5 degrees of accuracy.

Figure 22) Sketch of Spring Validation Experiment

The drone will follow a search path similar to the one sketched in blue above, and once it

detects the wellhead (under 3 meters from wellhead) it will approach the dock, which is located

in front of the wellhead. Once the drone has a visual lock on the dock with it’s downward-facing

camera, it will execute an automatic docking sequence and arrive in its final docked position.

8.4 Budget Status

Total budget: $4000

Total spent to date: $2807.06, as shown in Table 4.

Big ticket items:

● 3DR Iris+ Drone x2: $1200

● Minnowboard Max x86 SBC: $150

● Odroid XU-4 Arm SBC x2: $166

● NicaDrone Magnet: $90

● PX4 Flow Optical Flow Camera x2: $300

Table 4) Full Budget

8.5 Risk management

Table 5 shows our Risk Management Table, where we have tracked all of the major risks

to our system.

Table 5) Risk Management Table

 The major risk that we identified and added after the PDR is shown in Figure 23.

Figure 23) Risk 16 Mitigation Strategy

 This risk has been tracked and mitigated since the PDR. We were able to get a second

AR.Drone from inventory. We are also going to be tracking this risk for the Iris+ during the

Spring semester. During the early parts of the Spring Semester, we are going to be building a

second Iris+ with the full electrical hardware the same as what we have shown for the FVE. This

will ensure that we have mitigated this risk for both the AR.Drone and the Iris+.

 The main risk that we have been tracking during the spring semester is shown in Figure

24.

Figure 24) Risk 6 Mitigation Strategy

 This risk has been given a firmer mitigation strategy. We have set a hard deadline of

March 9th to switch development from the Iris+ to the AR.Drone. This March 9th date will allow

us enough time to complete our required tasks for the SVE with the AR.Drone. By getting

position control working on the AR.Drone during the Fall, we have mitigated the risk that we

cannot get enough control over the Iris+ to successfully dock. With this hard deadline, we have

fully mitigated this risk.

 Figure 25 shows the updated Risk Likelihood-Consequence Table.

Figure 25) Risk Likelihood-Consequence Table

9. Conclusions

9.1 Lessons Learned

 The major lessons learned during the spring semester by Team C can be summarized

below:

● It is difficult to communicate and get everyone on the same page

● One person’s plan may not meet what the others in the group feel it should be

● It is easy to get busy with other things and not deliver what you need to deliver every

sprint.

 Team C found that it was often difficult to get everyone on the same page during

meetings. Oftentimes, one person would say one thing and it would mean something completely

different to another person. This would range from technical definitions to emotions to

scheduling conflicts. The most detrimental miscommunications happened when technical

definitions were not properly communicated. Often, two people would be arguing about a

technical question without realizing that they were both on the same side. Other times, a person

would get hung up on a simple aspect of a technical question because they were not

understanding the definitions another team member was using.

 Another form of miscommunication was during the planning stage. This would happen

whenever the team would delegate tasks. Oftentimes, one team member's idea of what they are

working on should look like. This can often lead to problems whenever the sprint is over. Work

that the rest of the team felt should have been done will not get done because of this

miscommunication. This leads to a lot of wasted effort on the part of every team member and

could be detrimental at the later parts of the semester, whenever things get into crunch time.

Luckily this miscommunication did not the outcome of our fall deliverables, but this

miscommunication lead us to be less productive each sprint than we would have liked.

One of the major lessons that we learned is that the MRSD program can be very time

consuming. Our technical classes require a lot of our time, and that time can often be

miscalculated by the team. Often, work during the sprint would either go undone or half done,

because other work cropped up for the team. If work was not essential to completing our FVE

goals, it would always go undone. This was because we did not have a proper accountability

system in place during the semester.

9.2 Key Spring Activities

 Due to the lessons the team has learned during the Fall semester, the team has come up

with a few key activities to increase productivity during the Spring semester:

● Go back to requirements during a miscommunication

● Communicate and record all decisions made

● Get specific demonstrable deliverables for each sprint for each person

● Show demos at the sprint kick-offs

 The first task will help with miscommunication. By explaining what one is talking about

in the language of requirements, the team be able to ensure that we are on the same page. This is

because we have already talked extensively about requirements. The second task will help ensure

that one is held accountable. By recording every decision that we make, it will not be possible to

claim ignorance about tasks that have been delegated to each member.

 The main spring activity that we have come up with to increase productivity are numbers

three and four on the list. By having specific demonstrable deliverables and demos for each team

member during the sprint kick-offs, the team will be able to hold each other accountable for the

work done during each sprint. It will also allow the team to get on the same page with what

everyone is working on. These will act as internal progress reviews that will cover some of the

incomplete things that the team is not ready to show in the progress review to Professor Dolan

and the TAs.

10. References

[1] http://charliedeets.com/3d-robotics-x8-multicopter/

[2] http://people.csail.mit.edu/kaess/apriltags/

[3] http://wiki.ros.org/tum_ardrone

http://charliedeets.com/3d-robotics-x8-multicopter/
http://people.csail.mit.edu/kaess/apriltags/
http://wiki.ros.org/tum_ardrone

Appendix A: Detailed WBS

Detailed Fall WBS eye-chart

