Spring Sprint 1: AR.Drone Risk
Mitigation, Control Node, and April

Tag Detection
Individual Lab Report #6

Job Bedford

Team C: Column Robotics
Eric Sjoberg, Rohan Thakker, Cole Gulino

ILR6
1/28/16

Figure 1: Ardrone tele-op test flight

Individual Progress

Welcome to Spring Semester, MRSD Project Part II! As team we decide that
we need an ultimate risk mitigation strategy if development on the Iris+ drone failed
meet requirements for the Spring Validation Experiment. Again the Iris+ drone is
our main platform, and we have been adding onboard sensors and computation to
transform it into a terrestrial analog for undersea searching and docking. With 4
months left, we have yet to get the drone to autonomously hover, let alone search
and dock. If the drone becomes too much of a hurdle, the team has decided to switch
back to the Ardrone. Thus development on the Ardrone to perform the SVE must
commence. The Ardrone is a low-cost reliable platform, that our team has vast
experience in work with throughout fall semester. My responsibility for these past
two weeks was development of the Ardrone framework to be reliably controlled via
our own mover node as well as establishing April tag detection from the drones
onboard camera.

Controller Node:

For the fall validation experiment, our team relied on a ROS Ardrone
package called tum_ardrone. Tum_ardrone utilize the dynamics of the drone, the
optical flow sensor, and the IMU reading to derive robust state-estimation and
control of the drone.

PTAM Drone Map View = B 3 = 1021PM

Send Commands Node Communication Status
Drone Navdata: 115 Hz
Drone Control: 5 Hz settings
Pose Estimates: 30 Hz settings
Joy Input: 0 Hz me
Pings (RTT): 423 (500B), 955 (20kB) settings
Motors: 0.000000 0.000000 0.000000 !
Autopilot Status:

dle (Quee:) ame: 'buttonFlattri
Next: NULL

Target: (0.00, 0.00, 0.00), 0.0 name: 'tum_ardrone_g|
Error: (0.00, 0.00, 0.00), 0.0 (|.| 0.00)

Cont.: r 0.00, p 0.00, g 0.00, y 0.00

Stateestimation Status:

PTAM: ldle
Map: -
Scale: 1.000 (1 in, 0 out), acc: 0.51

.f
O
B
EH
5

==
)

@)

/
7/ f \ \ scele: 1.000 (acc: 0.512) PTAMtime: ‘4 Mms/ (4 ms totel)
Drone Pose: xyz=(0.00, 0.00,/ 0.00). _ rpy=(0.00, 0.00, 0.00)

Figure 2: tum_ardrone in terminal

With this our team could coordinate the drone to desired coordinates with
respect to the drone initial takeoff coordinate. Keeping the Tum_ardrone framework
and control scheme, I wanted to write a node that would bypass the tum_ardrones
GUI and pass the same messages to the Ardrone computer to control it. Once my
own mover node was complete, a sequence of autonomous commands and
instructions could orchestrate the drone’s movement with the tum_ardrone
package.

€ tum_ardrone GUI

Send Commands

autoTakeover 500 800
setReference SPOSES
setMaxControl 0.1
setlnitialReachDist 0.2
setStaywithinDist 0.5
setStayTime 3
lockScaleFP

goto0000
goto001.50
goto0000
goto001.50
goto0000
goto001.50

goto 1.5-1.51.50
goto-1.5-1.51.50
goto-1.51.51.50
goto 1.51.51.50
goto 1.51.50.50

Load File: | square3x3.txt

Node Communication Status

- Drone Navdata: 55 Hz

Clear and Send | Clear

Land | Takeoff Emergency Toggle Cam| FlatTrim

Messages
PTAM has been reset.

Drone Control: 5 Hz

Pose Estimates: 30 Hz
Joy Input: 0 Hz

Pings (RTT): 408 (500B), 960 (20kB)
Motors: 0.000000 0.000000 0.000000 !
Autopilot Status:

Idle (Queue: 0)

Current: NULL

Next: NULL

Target: (0.00, 0.00, 0.00), 0.0

Error: (0.00, 0.00, 0.00), 0.0 (|.| 0.00)
Cont.:r 0.00, p 0.00, g 0.00, y 0.00

Stateestimation Status:

PTAM: Idle

Map: -

Scale: 1.000 (1 in, 0 out), acc: 0.51
ScaleFixpoint: FIX

Drone Status: Landed (97 Battery)

Control Source:

) Keyboard) Joystick
() Autopilot @® None
[Use Onboard Hovering

Ping Drone (every 1s)

Video resolution: 640 x 360
Load File /home/job/catkin_ws/src¢/tum_ardrone/flightPlans/square3x3.txt

Figure 3: Tum_ardrone GUI

The command sent from the GUI are pre-defined in a ‘c COMMAND’
structured string. A tele-op node was written to send command in a similar fashion
and control the drone to take off, land, goto left and goto right. This node will now
function as a foundation for control of the Ardrone

ardrone

/VaMmMMnd

érdrone/takeoﬂ

y/

%i drone_driver
_—

rdrone/rese ardrone_driver
drone_autopil " drone/navdath drone_gui
'drone_autopilot /drone_gui

rdrone/image_r:

rone_stateestimation

M
V{rdrone/predktedPo 'drone_stateestimation
v
Jcmd_vel
anchor_drone tum_ardron

@ m_ardrone/co

Figure 4: RQT node Graph of Tum_Ardrone with TeleOp node (anchor_drone)
passing messages to the Tum_Ardrone computer

April Tag Detection:

In order for our system to find the wellhead and position itself to dock, it will
need of feature to localize itself with. April tags are specially designed black and
white targets that computers can discern the pose and orientation of in three space.
These tags are frequently used in robotics application and make for robust, low-
maintenance beacon detection. There exist three main casts of April tag, Tag36h11,
Tag25h9, and Tag16h5. Each of these casts has about 16 unique ID’s.

Team A and the MRSD Wiki pointed me to the AprilTags C++ Library develop
at MIT, http://people.csail.mit.edu/kaess/apriltags/. This was my starting point.
The library off the bat grabs camera feed from the labtop and starts searching for
predefined April tags. The software worked well, though I had to change some
default setting to specify the tag cast. Now I needed a ROS wrapper for this C++ in
order to integrate with the ardrone drivers and controls. The goal was to post the
April tag poses and orientations on a rostopic for the other nodes to utilize.

Github revealed a few ROS wrappers from the C++ MIT library. Two of them
were dead ends. I spent a good amount of time tying to repurpose their publishing,
but that ultimately was to no avail. Eventually I consulted Team D, who
recommended third source that [ultimately ended up using. In no time at all I had
April tag detection up and running.

Figure 5: April Tag Testing, Drone pointed at April tag

Challenges

The most challenging issue this past week was debugging April Tag packages.
As mentioned before the tag detection softwares I initial worked with were not fully
developed or required unique msg passing in ROS that was difficult to reverse
engineer. This particular package, http://wiki.ros.org/apriltags ros, [spent most of
my time trying to get working. In the process, | gain some good practice with writing
subscribers and classes in C++. [was seeking to work more with software this
semester, so this was a good learning experience.

Other than that, everything else was pretty straight forward, thou it took me
a while to figure out one need to specify to tag class the April tag detector should
look for.

Teamwork

The team divided up into three groups each with their own drone subproject.
[was working with the AR.Drone as an ultimate failback plan for the SVE. This
included setting up an architecture and sensing scheme that will be used for the
final demo. Cole and Rohan worked on debugging the fall drone. And Eric focused on
establishing the second spring drone.

This week Erik worked on establishing everything we developed on the first
Iris+ on the second Iris+. This included assembly of the drone, construction and
mounting of any and all hardware and sensors, adapting the power system, update
and installing the proper firmware, and calibrating the system as a whole. Eric
performed all these tasks at a breakneck pace and by the end of the sprint the
second drone was further along than the first drone. Part of the speed was due to
understanding the team built over the past semester and utilizing the right
Pixhawk4 firmware from the get go.

This week Rohan and Cole work as a team to debug and fix the fall Iris+
drone. The drone’s biggest issue was its UART communication for the Pixhawk
hardware to the Odroid. Have struggles with a faulty level shifter and unreliable
micro USB ports, they spent most of the past two weeks debugging and research
hackish solutions to solve it. They eventually found a round about way of
repurposing the RF communications port to the computer to act as a makeshift
UART port. Overall the issue was using the MAVROS firmware as oppose to the
Pixhawk 4 firmware on the Pixhawk hardware. As sound as Rohan and Cole realized
Erik had more success with the Pixhawk4 firmware, the team ultimately choose to
go that route for the remainder of the project.

One of the greatest takeaways this week was learning the advantages of
having two identical hardware platforms. With two platforms, work exponentially
increases. If one sub-team is hung up on a debugging issue, the other sub-team can
try a different route and if either one works, it short-circuits the other. Also with
two platforms the team has more freedom to test the drones.

Upcoming Week

With the control node and April tags detection, these next two weeks I will
program the drone to perform the barebones of SVE subtasks. | will first make the
Ardrone autonomously hover over an April tag for an extend period of time using
it's downward facing camera. Using the control node, the Ardrone will be
orchestrated to perform a hardcoded ‘tornado’ search for a well tag. Using the
drones forward facing camera, will also program to drone to home on a wall -mount
April tag, from an interesting starting position with the April tag in initial sight.

