
	
	
	
	
	

Spring	Sprint	2:	AR.Drone	SVE	
Architecture,	and	Autonomous	
Docking	
Individual	Lab	Report	#7	
	
	
	
	
	
	
	
	
	
	

Job	Bedford	
	

Team	C:	Column	Robotics	
Eric	Sjoberg,	Rohan	Thakker,	Cole	Gulino	

	
	
	
	
	
	
	
	
	
	
	
ILR6	
2/11/16	
	
	



Individual	Progress	
	
Architecture:	
	 These	past	2	weeks	I	designed	the	software	architecture	that	will	be	used	for	
the	AR.Drone	SVE	Demo.	As	a	team	we	had	a	design	review	to	critique	my	design	
add	any	further	detail	the	team	deemed	nesseary.	This	Architecture	is	expandable	
onto	the	IRIS+	drone	to	an	extent	and	will	be	used	to	coordinate	our	software	
schemes	and	planning.		
The	architecture	will	be	a	state	machine.	The	State	are	as	followed:	
	

1. Setup	and	Tornado	Search			
	 	 Once	the	demo	environment	is	set	up,	the	Drone	will	start	from	an	
initial		position	and	will	be	manually	operated	to	a	‘Flight	Plane’	height,	where	it	will	
wait	for	the	demos	initiation.	Once	initiated	the	drone	will	enter	the	Tornado	search	
state	where	it	will	generate	an	autonomous	cone	flight	path	from	a	function	(given	a	
cone	angle	defined	by	the	field	of	view	of	the	front	carmea.	A	rough	sketch	is	shown	
below	in	figure	2.	This	flight	path	runs	a	loop	of	trajectories	to	the	‘Tum_Ardrone’	in	
increments	of	.5	meters	with	a	half	second	delay.			
	

	
Figure	2:	Sketch	of	Tornado	Search.		

The	state	is	broken	if	the	April	tag	detection	node	sends	an	‘identify’	tag	message.	If	
the	tag	is	lost	in	the	succeeding	state,	the	system	will	return	to	this	state	and	
continue	the	tornado	search.	If	system	reached	7	meter	parameter	limit	while	in	this	
state,	it	will	return	to	origin	and	land.		
	

	
	

2. WellHead	Alignment	



	 Once	Wellhead	tag	is	detected,	the	system	utilizes	April	tag	poses	and	
tum_ardrone	state	estimation	in	a	PD	loop	(inside	mover	node)	to	position	drone	1	
meter	in	front	of	Wellhead	at	the	appropriate	Flight	Plane	height.	Once	system	is	in	
proper	position	it	will	switch	to	the	downward	facing	camera,	breaking	out	of	it’s	
current	state.	If	PD	control	is	compatible	with	tum_ardrone	framework,	will	utilize	
the	tum_ardrone’s	pose	estimation	and	take	a	series	of	flight	steps	to	approach	it’s	
target.	
	

3. Dock	Alignment	
	 System	will	utilized	april	tag	detection	with	downward	facing	camera	to	run	
PD	Loop	(small	cmd_vel’s)	to	hover	over	dock	for	alignment.	State	will	be	broken	
when	tag	is	within	+/-	.3meters	from	center	of	cameras	view.	A	depiction	of	this	
state	can	be	seen	in	figure	5.	
	

	
Figure	5:	Dock	Alignment	State	

	
4. Autonomous	Docking		

	 System	will	descend	in	.5	meter	increments	until	1	meter	above	target.	This	
descent	is	to	the	lowest	allowable	height	given	ground	effects,	camera	view	and	tum	
ardrone	limitation.	System	will	readjust	once	more	(using	previous	PD	loop)	Finally	
system	publishes	to	/land	topic	for	hard	landing.	Process	is	shown	in	figure	6.	



	
Figure	6:	Autonoumous	Docking	State	

	
5. Validation	and	Shut	Off	

	
System	will	turn	off.	Validation	will	proceed	based	on	drone	landing	gear	locations	
relative	to	circular	markers,	as	seen	in	figure	7.	This	concludes	the	demo	

	
	
Autonomous	Docking	with	forward	facing	camera:	
	 This	week	my	demo	showcase	the	ardone	autonomously	aligning	with	a	well	
head	tag	and	landing	in	front	of	it.	The	demo	primarily	used	the	april	tag	detection	
node	and	the	mover	node	from	last	sprint.		
	 In	the	demo,	the	system	determines	the	drones	relative	distance	from	target	
in	3-space.	Then	repositioned	itself	to	be	.25	meters	in	front	of	target.	There	existed	
error	in	this	estimate.	The	longitudinal	distance,	the	drone’s	forward	direction,	
estimate	was	precise,	while	the	latitudinal	distance,	the	drone’s	right	and	left,	was	
imprecise.	During	the	flight	approach,	if	tag	left	cameras	field	of	view	and	drone	is	
lost.	The	inaccuracies	were	proportional	with	distance.	The	further	the	drone	was	
away	from	the	tag	the	more	error	existed	in	the	measurement.	Step	approach	was	
used	to	close	the	distance	between	drone	and	target.	The	drone	would	take	a	half	



distance	first	step,	recalculate,	take	a	full-distance	second	step,	recalculate,	then	
precisely	hone	onto	the	tag	in	the	third	step,	and	end	with	landing.	Landing	is	a	
near-straight	drop,	and	thus	not	requiring	the	précising	of	downward	facing	camera	
for	accuracy.	A	PD	loop	was	not	used	since	tum_ardrone	framework	offered	reliable	
pose	estimation.	
	 Due	to	team’s	success	with	the	IRIS+,	I	will	no	longer	be	working	on	the	
ar.drone,	and	will	work	on	autonomous	docking	for	the	IRIS+	this	upcoming	sprint.		
	 		
Challenges			
	 I	originally	claimed	to	dock	using	downward	facing	camera	in	the	last	ILR.,	
but	the	downward	facing	camera	was	incompatible	with	April	tag	detection	node	
package.	Figure	8	show	one	of	the	debugging	tests.	After	many	attempts	to	debug	
and	get	this	problem	resolved,	I	decided	to	switch	to	using	the	ardrone	tag	that	
came	with	the	robot.	The	ardrone	is	already	programed	to	recognize	this	tag	and	
just	has	to	have	its	driver	configured	properly.	
Unfortunately	the	downward	facing	camera	and	tag	configuration	had	terribly	
documentation,	and	search	around	various	forum,	I	realize	other	had	the	same	issue	
I	was	have.	I	started	to	construct	my	own	RGB	blob	detection	node	to	be	used	as	a	
back,	but	due	to	time	constraint	and	priorities	of	the	mission	choose	to	re-scope	to	
autonomous	landing	with	the	forward	facing	camera.	Since	the	drone’s	landing	is	
nearly	a	straight-drop.	Using	the	downward	facing	camera	proved	unnecessary.	

	
Figure	8:	Debugging	Downward	Facing	Camera	

	
Teamwork	
	 The	team	divided	up	into	three	groups	this	sprint.		



	 My	mission	was	ardrone	autonomous	docking.	
	 	Eric’s	mission	was	to	validate	the	perception	capabilities	with	the	ros	
package	rtab	mapping.	This	included	checking	feasibility	of	running	the	package	on	
the	Odroid	as	well	as	measuring	the	computational	cost	and	update	rates.	Eric	spent	
most	of	his	time	installing	the	right	softwares	and	drivers	to	make	the	package	
compatible	with	the	Odroid’s	ARM	processor.	He	was	successful	in	this	endeavor	
and	the	rtab	real-time	mapping	and	localization	package	looks	quite	promising.	
	 Cole	and	Rohan	set	out	on	autonomous	hovering	with	the	Iris+.	The	Pixhawk	
comes	with	an	autonomous	flight	mode	that	the	MAVROS	package	can	command.	
Due	to	the	small	flight	area	of	the	MRSD	net	they	were	unable	manually	fly	the	quad	
long	enough	to	switch	to	the	autonomous	flight	mode.	Eric	and	I	are	the	only	ones	
can	properly	pilot	a	quadrotor	on	the	team,	so	Cole	and	Rohan’s	work	was	
sometimes	bottle	necked	by	the	availability	of	a	pilot.	After	switch	to	a	bigger	flight	
net	in	Wean	Hall,	we	were	able	to	achieve	autonomous	hovering	right	away.	
	
Upcoming	Week	
	 Autonomous	docking	of	the	Iris+	is	the	goal	for	this	upcoming	sprint.	Team	C	
will	break	up	into	two	subteams	that	will	converge	on	the	same	goal	from	two	
different	directions.	The	1st	week	one	team	will	work	on	precision	hovering	utilizing	
april	tag	dectection.	The	other	team	will	test	and	quantized	the	iris+’s	open	loop	
landing	capabilities.	The	2nd	week	both	teams	will	share	information	and	code,	then	
focus	on	autonomously	docking.	I	will	be	starting	on	the	precision	hover	task,	since	I	
have	the	most	experience	working	with	April	tags	on	the	team.	
	
	


