

Sensors and Motors Lab
Rohan Thakker

Team C: Column Robotics

Teammates: Job Bedford, Cole Gulino and Erik Sjoberg

ILR03

Oct. 30, 2015

1) Individual Progress

My main objective for this week was to get familiar with the Pixhawk firmware. I started

by reviewing [1], paper of ICRA 2015 that details the software architecture of Pixhawk. The

deeply embedded controller (Pixhawk) runs on NuttX operating system, shown in Figure 1.

External linux companion computer (MinnowBoardMax in our case), communicates with the

Pixhawk over UART using MAVROS protocol.

As shown in Figure 1, the 3DR provides Software in the Loop (SITL) Flight Simulation

environment. Since there is a delay in the shipping of our IRIS+, I worked on getting the

simulation environment setup. This will also help us test our control algorithms before we run

them on the hardware.

Further, I also spend some time understanding the dynamics of quadcopter’s and

differential flatness. Appendix shows the derivation of the dynamics model a quadcopter in

state space and its LQR formulation for developing a controller. Further, it also details the

properties of differential flatness that makes the quadcopters controllable directly in the 4

dimensional output space (Y).

Cole and I met Shaurya Shankar (Current PhD student under Dr. Nathan Michael). He

suggested that before getting into any sophisticated algorithms for state estimation, we

should try to run a Lukas Kande based optical flow at high frame rate. This is generally enough

for most In-door applications. Me and cole have reviewed the algorithm and will be

implementing it this week. [2] shows the paper we used to review the Lukas-Kanade (LK)

based optical flow. The LK algorithm uses first order Taylor series approximation and gradient

descent to solve an optimization. Hence if we run at a high frame rate, the displacement

between consecutive frames will be less. Hence, the Taylor’s series approximation will be

more accurate and the gradient descent algorithm will converge faster. We also ordered the

Sony Playstation Eye camera which gives a frame rate of 120Hz.

Figure 1 Software Framework for controlling the Drone using a Single Board Computer
source: [1]

2) Challenges
Our IRIS+ quadcoter was declared as fraud by Fedex for some unknown reason and was

sent based to California. We had to get it re-ordered from 3DR and they have finally reshipped

our quadcopter. We now expect to receive it by next week.

I also faced many problems while getting up the Pixhawk development environment

setup. It runs on the NuttX operating system. I used [3] to setup the development

environment but was getting build errors after pulling the source code from github. Then I

tried [4] to setup the gazebo based simulation environment but was unsuccessful because of

the same error. Finally, I resolved the issue by [5] which uses a docker container. I was able

to get readings from an external joystick which can be used to control the drone in simulation.

Our team was also facing a problem of deciding the right message format in ROS to

communication between Reader, Planner and Mover nodes. ROS has multiple ways to handle

this: ROS Frame, TF and Odometry Message. The problem was that we have our orientation

estimate in quaternions and its covariance in fixed angle representation. Erik researched each

of this, and we decided to use Odometery Message:

This represents an estimate of a position and velocity in free space.
std_msgs/Header header (Header.frame_id = odom frame)
 → uint32 seq (increasing ID)

 time stamp
 string frame_id

string child_frame_id (ID of base_link = frame on quadcopter)
geometry_msgs/PoseWithCovariance pose (USING odom GLOBAL FRAME)
 → geometry_msgs/Pose pose
 → geometry_msgs/Point position

 geometry_msgs/Quaternion orientation
 float64[36] covariance (x, y, z, rot about X, rot about Y, rot about Z) X 6

geometry_msgs/TwistWithCovariance twist (USING base_link QUADCOPTER FRAME)
 → geometry_msgs/Twist twist
 → geometry_msgs/Vector3 linear (x, y, z)
 geometry_msgs/Vector3 angular (x, y, z)
 float64[36] covariance (x, y, z, rot about X, rot about Y, rot about Z) X 6

http://docs.ros.org/jade/api/std_msgs/html/msg/Header.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/PoseWithCovariance.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Pose.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Point.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Quaternion.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/TwistWithCovariance.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Twist.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Vector3.html
http://docs.ros.org/jade/api/geometry_msgs/html/msg/Vector3.html

3) Teamwork
Table 1

 Job Bedford Cole Gulino Erik Sjoberg Rohan Thakker

Fixed bug with MOVER
Node for AR.Drone in

ROS

Identified requirements and
design for the power board

Setup the
navigation/planning
framework in ROS

Studied dynamics and
control of quadcoter

Tested the MOVER node
on AR DRONE

Studied LK optical flow
tracker

Researched and
documented

Odometry usage

Ordered Camera and
Studied LK optical

flow algorithm

 Reviewed pixhwak code and
setup the development

environment

 Reviewed Pixhwak
code and setup the

simulation
environment

The Table 1 shows the tasks done by each of our team members.

4) Plan
Cole and I will be working together on low-level controls of the IRIS+. This includes

implementing the LK based optical flow on the MinnowBoardMax and optimizing the code

to get maximum frame-rate. We will also setup the simulation environment of the IRIS+ in

gazebo and controlling it from a ROS node.

Erik will be working on implementing visual odometry using available open-source

packages and comparing them. Job will be using Erik’s work to see it’s performance on the

ARDrone and also set up the framework to publish images received from the ARDrone to

the planner node.

5) References
[1] http://people.inf.ethz.ch/dominiho/publications/ICRA_2015_px4_autopilot.pdf

[2] https://www.cs.cmu.edu/afs/cs/academic/class/15385-

s12/www/lec_slides/Baker&Matthews.pdf

[3] https://pixhawk.org/dev/minimal_build_env

[4] https://pixhawk.org/dev/ros/sitl

[5] https://pixhawk.org/dev/ros/automated_sitl

http://people.inf.ethz.ch/dominiho/publications/ICRA_2015_px4_autopilot.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15385-s12/www/lec_slides/Baker&Matthews.pdf
https://www.cs.cmu.edu/afs/cs/academic/class/15385-s12/www/lec_slides/Baker&Matthews.pdf
https://pixhawk.org/dev/minimal_build_env
https://pixhawk.org/dev/ros/sitl
https://pixhawk.org/dev/ros/automated_sitl

Appendix:

