Preliminary Design Review

Team HARP Human Assistive Robotic Picker (Abhishek, Alex, Feroze, Lekha, Rick) Carnegie Mellon University

Project Description

Project Description

Project HARP aims to deliver an autonomous robotic picker to Interpret work orders, find target items, and retrieve target items.

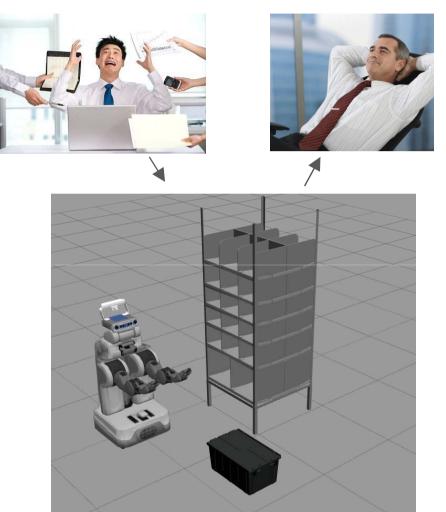
Our system will utilize Intelligent perception, robust autonomous decision-making, a capable manipulation platform, and an innovative suction system.

The PR2 research platform will be used courtesy of the Search-based Planning lab at CMU

PR2 Research Platform

Prof. Maxim Likhachev

Andrew Dornbush


Venkat Narayanan

Use Case

Imagine you are an overworked MRSD student it's the night before your project demo, you're tight on budget, low on sleep when the unthinkable happens... your main drive motor burns out.

Lucky for your, Amazon just implemented the HARP in its order fulfillment warehouse, driving down rush delivery fees and decreasing fulfillment times. You find a replacement on Amazon and to your amazement it can arrive in 12 hours. As soon as you click the 'order now' button, HARP comes to life. Moments later your drive motor arrives to HARP on a Kiva robotic shelf. HARP interprets your order, visually confirms the location of the motor on the shelf, and retrieves the item. Once HARP is finished, your motor is packaged and loaded into a delivery truck destined for NSH.

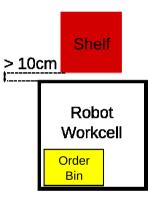
The next morning you get your motor and impress the MRSD professors with your awesome demo, thanks to HARP.

Requirements

System Level Requirements

There have been no changes in system level requirements

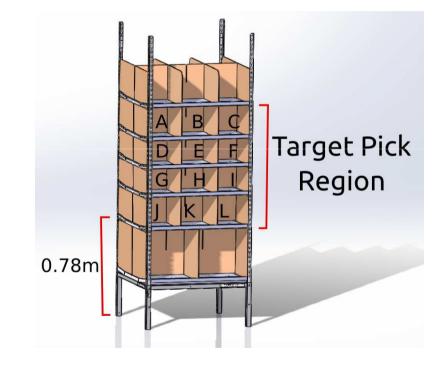
Functional Requirements


The robot shall...

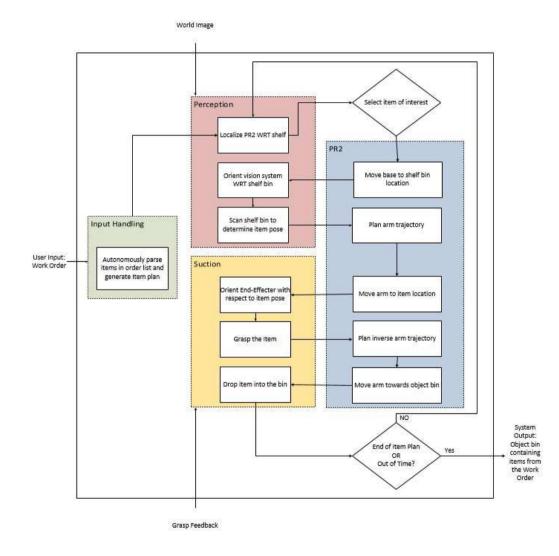
- 1. Accept order list from user
- 2. Autonomously parse items in the order list to generate item plan
- 3. Autonomously determine positions and orientations of target items
- 4. Autonomously picks item from shelf bin
- 5. Autonomously places item in order bin
- 6. Does not drop items
- 7. Does not damage items

Nonfunctional Requirements

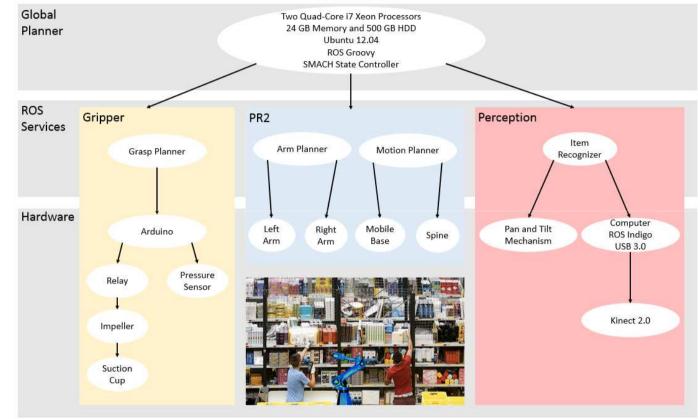
The robot must...


- 1. Cost no more than \$4000
- 2. Be completed by May 1st, 2016
- 3. Transportable or available at ICRA 2016
- 4. Robust to environmental variations including lighting and physical geometry
- 5. Robust to lighting between 320-500 lux
- 6. Be available for testing at least 1 day per week
- Start and stay within a 2m by 2m boundary (except the end effector)
- 8. Have an emergency stop

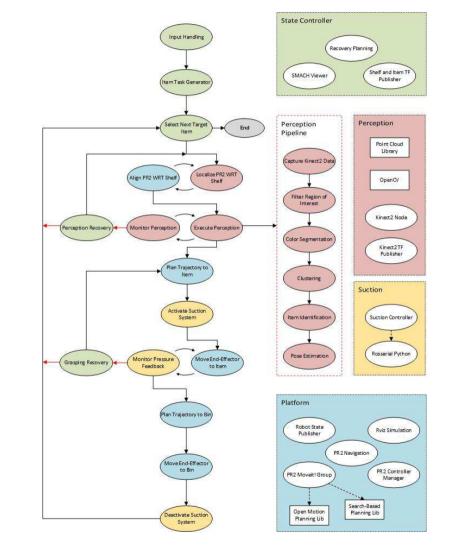
Performance Requirements


The robot must...

- 1. Interpret work order with 100% accuracy
- 2. Autonomously identify object with 90% accuracy
- 3. Autonomously determine suction grasping surface on 75% of attempts
- 4. Autonomously picks item of known pose from shelf bin on 50% of attempts
- 5. Autonomously places 90% of picked item in order bin from a height of no more than .3 meters
- 6. Acquire at least 3 items of 10 total attempts in under 20 minutes
- 7. Be able to lift items up to .5kg mass
- 8. Acquire items from bins located at a max height of 1.86m and minimum height of .78m
- 9. Acquire items from a .27m x .27m shelf bin



Architecture



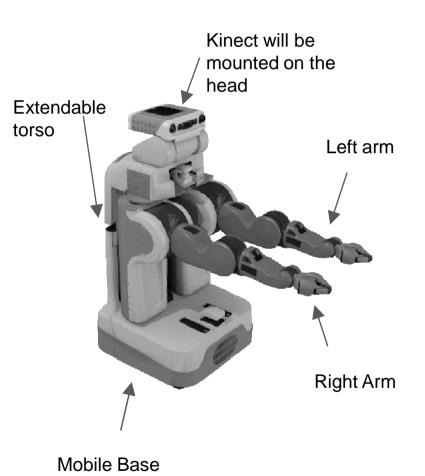
Physical Architecture

Software Architecture

Platform Subsystem

PR2 Robot Platform

Willow Garage PR2 robot at SBPL


7 DOF

Arm payload - 1.8kg

Full ROS support

Can be simulated in rviz

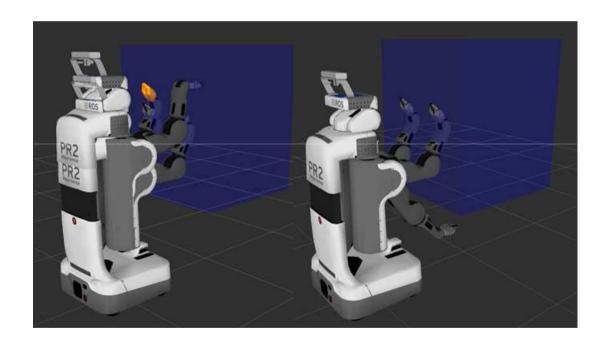
Requires a platform for reaching top bin of shelf (~1.86m)

Planning Subsystem

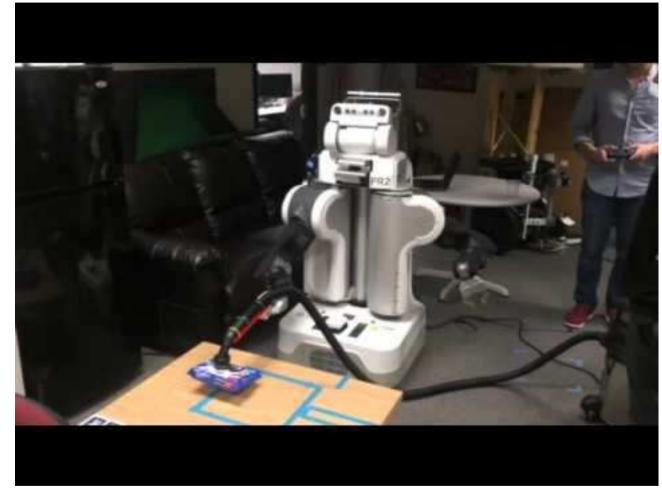
Arm Kinematics:

Controlled using pr2_controller ROS package

Movelt planner using OMPL library


Later switch out OMPL for SBPL's library

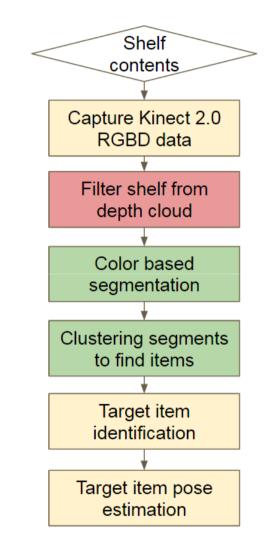
Mobile Base Navigation:


Controlled with standard ROS move_base package

PR2 System Status

- Used Movelt! to explore PR2 workspace in RVIZ
- Teleop control of PR2 robot using PS2 joystick
- IK control of PR2 in simulation
- Working towards IK control of PR2 platform
- Work in progress for PR2 base navigation in

PR2 System Status



https://www.youtube.com/watch?v=2ZCQBrxa7nQ

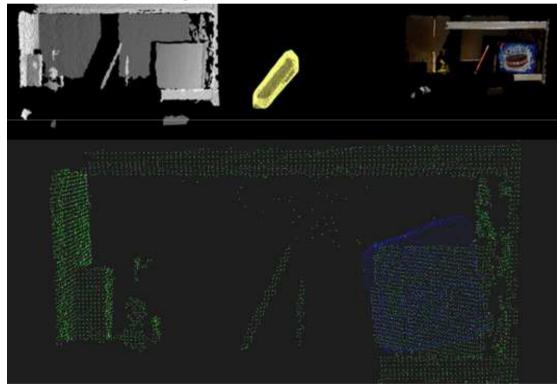
Perception Subsystem

Perception Subsystem Description

- Capture kinect 2 image and pipe RGBD data to main computer
- Filter out shelf from image based on known world model
- Find items on shelf using segmentation and clustering
- Histogram feature matching to identify item and orientation

Perception System Status

Segmentation and Clustering



- Segmentation using RGB color and depth data
- Segments combined to identify item location assuming horizontal workspace
- Intensity of neighborhood points determine the segments of the same objects

Perception System Status

- Calculate normal vectors of ground truth model
- Match SHOT features between ground truth and shelf scene
- Calculate transformation to fit model into scene

3D Feature Matching

Gripping Subsystem

Suction System Description

Electronics

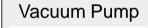
- 1. Relays power Vacuum pump
- 2. Allows for ROS control of System
- 3. Enables pressure feedback

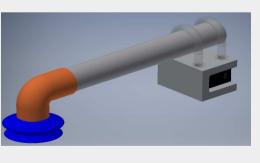
Vacuum Pump

1. High-flow Low-pressure system to provide suction

Custom End-effector

- 1. Grasping block for PR2 gripper
- 2. Modified suction cup for improved performance
- 3. Pressure sensor mounting

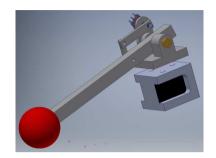

Electronics

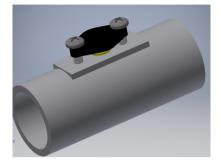

AC Power Relay Crydom Series 1 D1240

ROS-connected Arduino Micro

Custom End-Effector

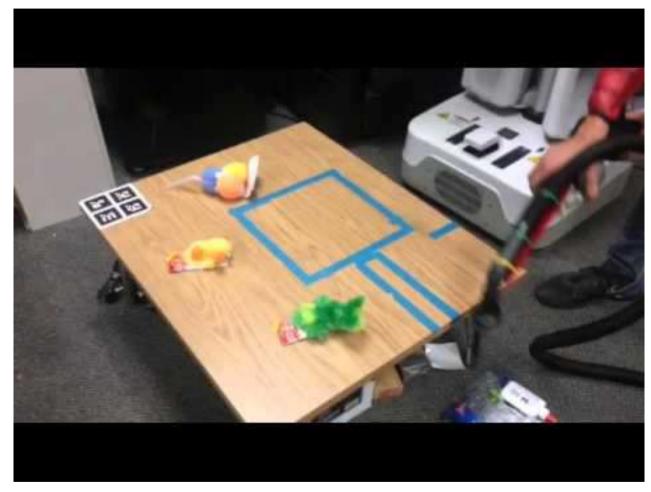
Suction System Status


- Initial Circuit built and tested with pressure sensor and Arduino Uno
- Completed ROS node to take commands from computer and broadcasting pressure readings
- Designed control electronics circuit. Estimated completion 11/15/2015


Vacuum Pump

- Prototyped systems using ShopVac, DC vacuum pump, and Bernoulli vacuum
- Sourcing impeller for 200 CFM and 400 kPa

End Effector


- Designed several instances of final-intent end effector
- Designed durable end effector for testing

Suction System Status

https://www.youtube.com/watch?v=acOdkD7zp_4

Project Management

Project management - WBS - 1

Prog	1st	2nd	Perception	Prog	1st	2nd	Platform	Prog	1st	2nd	Grasping	Legend
	Feroze	Alex	ROS Integration		Alex	Feroze	ROS Integration		Alex	Feroze	ROS Integration	In Progress
	Lekha	Rick	Item Recognition, Initial		Alex	Bhatia	State Machine		Feroze	Bhatia	Electroinics Design	Not Started
	Rick	Lekha	Pose Estimation, Initial		Feroze	Bhatia	Simulation		Rick	Alex	Suction system Design	Complete
	Lekha	Rick	Initial Testing		Bhatia	Feroze	Navigation		Rick	Feroze	Final Build	
	Rick	Lekha	Electroinics Design		Bhatia	Feroze	Test Naviation Control					
	Rick	Lekha	Hardware Design		Feroze	Bhatia	Arm Control					
	Rick	Lekha	Final Build		Feroze	Bhatia	Test Arm Control					
	Venkat	Lekha	Advanced Perception		Andrew	Bhatia	Advanced Planning					

Schedule

		October			November				Dec		
	Risk	10/12/2015	10/19/2015	10/26/2015	11/2/2015	11/9/2015	11/16/2015	11/23/2015	11/30/2015	12/7/2015	12/14/2015
Administrative											
Get Test Objects											
APC Game Analysis											
2015 Demo											
Input Handling											
ROS Integration											
Perception											
ROS Integration											
Item Recognition, Initial											
Pose Estimation, Initial											
Initial Testing		-				l I					<u> </u>
Electroinics Design		1								-	
Hardware Design		1		-	1 1						
Final Build		1			() ()						
Advanced Perception											
Platform	1										
ROS Integration	160				e				8		
State Machine											
Simulation											
Navigation				ii —i							
Test Naviation Control											
Arm Control											
Test Arm Control					1						
Advanced Planning						ſ					
Grasping	1										
ROS Integration		-							ľ		
Electroinics Design						-					
Suction system Design					11						
Final Build											

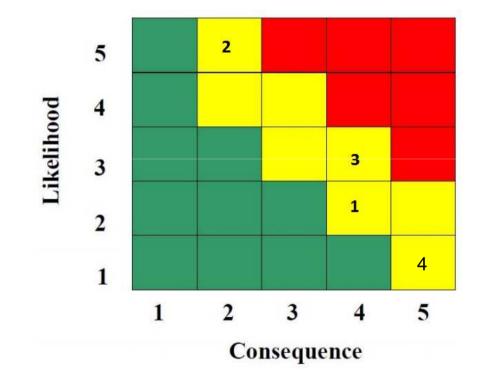
Fall Validation Experiments Test Plan

Experiment 1: Perception Experiment

- 1. Station kinect .5 meters from shelf
- 2. Place 1-3 items on the shelf, non occluding
- 3. Run perception through command line
- 4. Output 3D scene w/ bounding box around item of interest
- 5. Repeat 10 times, showing 70% success

Experiment 2: Gripper Experiment

- 1. Distribute all 25 items across a shelf
- 2. Randomly order items for pickup
- 3. Manually turn on vacuum
- 4. External operator holds PR2 gripping block and acquires item
- 5. Verify external LED changes color when seal is formed
- 6. Move gripper from shelf to bin
- 7. Manually turn off vacuum
- 8. Verify external LED changes color when seal is


Budget

Part	Supplier	Unit Price	Quantity	Total Cost
Perception Subsystem				
Kinect 2.0	Microsoft	\$140	1	\$140
Computer	Newegg	\$800	1	\$800
Platform Subsystem				
PR2	Sponsor	\$0		\$0
Grasping Subsystem				
Suction Cups	Piab	\$75	1	\$75
Tubing	McMaster	\$50	1	\$50
Arduino Mini	Amazon	\$20	2	\$40
Pressure Sensor	DigiKey	\$25	2	\$50
40 Amp AC Relay	DigiKey	\$30	2	\$60
3D Printing	MechE Shop	\$200	1	\$200
Potentiometer	DigiKey	\$5	1	\$5
Vacuum Impeller	TBD	\$80	2	\$160
Misc				
Testing Items	Amazon	\$100	1	\$100
Kiva Shelf	APC	\$0 1		\$0
		Total Build	d Cost	\$1,680

Risk Management

Risk ID	Risk	Description	Туре	с	Consequence	Mitigation Plans	
				ause			
1	System Integration	Integrating each sub- system in ROS framework	Technical	Technical difficulty and beyond personnel skill	Failing to meet validation experiment /Project objectives	 Continuous validation of subsystems Implementing a modular software architecture 	
2	Amendment in rules	Change in APC rules that might deviate from project goals/description	Programmatic	Unavailability of rules	Project scope becomes infeasible given time constraint.	•Working on subsystems that are unlikely to change •Buffer time to add features	
3	Not competitive enough	Not being challenging enough to represent CMU at APC	Programmatic	Failing to meet deliverables	Unable to participate in APC	Working towards weekly deliverables under the guidance of sponsor Maxim and Technical advisor	
Л	Procuring	Supply of hardware at	Programmatic	Failure to provide	I Inable to participate in APC	In constant touch with	

RISK CONSEQUENCE CHART

