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System Overview
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https://youtu.be/ko8Cr8kBc-Q



Why the Picking Challenge
Great Learning Experience for MRSD

Exposure to huge variety of robotic domains

Fits the MRSD schedule 

Real world application of SBPL planners (Perch, ARA*)

Visibility for CMU, SBPL, and team

It’s fun!.. Sometimes…
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Functional Architecture
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Suction Gripping
• High flow low pressure vacuum 
system 

•Custom suction cup mounted to UR5 
wrist 

• Capable of acquiring 36 / 38 items in 
list

•Simplifying the grasping problem. 
Most teams converged on similar 
designs.

• Make suction tube co-axial with last 
DOF to help planning problem

• Find a quiet vacuum
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Simulation and 
State Control
 SMACH state controller manages 
robot actions

 Actions simulated and visualized in 
RVIZ to aid in development

 RVIZ visualizations help validate 
robot actions

SMACH is not recommended, 
userdata is not handled efficiently
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Configuration Space Analysis
• Ensured UR5 feasibility

• Brute force configuration space search allows 
visualization of workspace within bins

• Optimized placement of robot origin with 
respect to shelf

• This did not indicate how difficult the  
planning problem would be. 

• Recommend a UR10 to increase 
configuration space

• Linearly actuated base or end effector would 
also help
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Localization

• Images captured from multiple 
perspectives merged using robot 
kinematic chain

• ICP Algorithm minimizes error 
between point cloud and shelf CAD 
model

• Algorithm runs twice during 
competition

• Worked sufficiently well for our needs, 
but recommended future algorithm 
constraining shelf height, etc.
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Motion Planning

• MoveIt! software package manages 
arm kinematics and path planning

•Base, end effector, and shelf modeled 
as collision objects

•Hierarchy of planners was 
implemented
1. Lookup Table

2. Cartesian Plan

3. Simple E-graph

4. SBPL (ARA*)

5. OMPL (RRTConnect)
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Planner Hierarchy
• A planning request prioritizes planners and returns the first successful plan 

augmented by velocity scale factor

1. Lookup Table
◦ A directed graph from joint state -> goal pose learned from single queries
◦ Pros: Fast and consistent. Mitigated Hose entanglement
◦ Cons: Manual process to learn paths, difficult to delete specific learned plans
◦ Improvements: Bidirectional Graph, DOT visualization, debugging tools

2. Cartesian Plan
◦ End Effector moves in straight line interpolated from current pose to goal pose
◦ Partials solutions can be returned if desired
◦ Pros: Fast, good solution quality
◦ Cons: only applies to a limited set of joint configurations
◦ Improvements: Better understand Moveit! implementation or Build our own

3. Cartesian Snap
• Andrew’s coupled version that performs a Cartesian plan to the nearest node on lookup graph
• Pros: Improved in-bin planning times, good solution quality
• Cons: Very painful to learn the in-bin plans using single-query planning
• Improvements: Automate trajectory saving. Quantify Solution quality for our problem
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Planner Hierarchy
Initial development used OMPL RRT planners. SBPL Integration required family planner 
workaround (courtesy of Andrew)

4. SBPL (ARA*)

◦ Used SBPL ARA* for single queries

◦ Pros: planning in-bin

◦ Cons: Trajectory execution was jerky, Planning times longer. Sometimes optimal solutions 
were undesired (bin 6 solutions inverted hose 360 Deg).

◦ Improvements: Modify SBPL plugin to allow arbitrary planning groups. Quantify Solution 
quality 

5. OMPL (RRT Connect)

◦ OMPL Randomized planners for single queries

◦ Pros: Fast, randomization was often helpful. Planning outside of bins

◦ Cons: non-deterministic, solution quality varied greatly

Planning through walls was an intermittent issue but fixed by upsampling collision checking

UR5 high joint velocity disables were a problem despite slowing down trajectory execution

 Need trajectory smoothing or  optimization for UR5 on all returned solutions
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SBPL Planning
Required addition of 2-finger heuristic to solve 
for goal orientations

A well designed system should require minimal 
planning
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Grasp Planning
1. Perform normal estimation

2. The centroid and bounding points of the pc are 

computed

3. Select Grasp Primitive ( top-down or sideways)

4. sort best normals

◦ 100 candidates, ordered

5. Compute EE poses (RPY randomization added) 

◦ ~100 pose-sets

6. Check pose sets against fastIK and only keep 

feasible goals 

◦ 5 – 25 candidates feasible, ordered

7. If too few candidates, generate default poses ( At 

least 12 guaranteed candidates)

13



Grasp Execution
Every pose is attempted by following process 

snap - snaps the target pose to the limits of the bin 

set – update visual pose marker

call - move_arm_server to move the arm

sleep - sleep briefly to reduce concurrent       

move_arm_server request

The execution ends when :

- Suction sensor determines success

- The end of the pose list is reached

- The amount of time executing grasp > 1 minute

Most of the time was spent in this operation.  Single query 

plans inside the bin are slow.
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Vision: Segmentation
Geometric Filtering - Shelf contents isolated 
from shelf based on localization results and 
Kinect Pose
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Segmentation - Shelf content clustered into 
shelf/not-shelf regions.  

SegNet CNN was trained on acquired data but 
eventually not used.

Raw Geometric Filtering images were passed to 
identification CNN



Vision: Identification CNN
SLIC (1) Divide image into small “superpixel” 
segments based on colors and edges

Segment Identification (2) Individual 
segments are classified using AlexNet CNN

Graph Generation (3) Neighboring 
“superpixels” are connected, forming a graph

Item Identification (4)  Individual “superpixel” 
identification outputs are merged to solve for 
an optimal scene
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Vision: Database Generation
A turntable was developed to automatically 
rotate items and scenes and record images.

100 - 200 images were collected for each item

Images were rotated, mirrored, colored 
skewed to upsample to add variety to the 
dataset

6,000 Raw images -> 400,000 training 
superpixels
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Vision: Perch
Perch: Geometry based search recognition and 
location solver developed by Venkat Narayanan and 
the Search Based Planning Lab

Perch was enabled on 4 of 40 items at the final 
competition. The pose estimate of these items was 
great. Perch processing took approximately 60 
seconds

◦ Glucose tablets

◦ Folgers coffee

◦ Paper towels

◦ Kleenex tissues
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Vision: Parallel Perception
Executive improvement to parallelize vision processing

◦ Runtime 14:30 min -> 12 minutes

Make subsystems as fast as possible. Best teams could attempt 30+ bins in 15 
minute time slot
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Vision: Lessons Learned
• Need functionality to determine confidence in perception results 
during runtime

• Lighting WILL be an issue, so plan accordingly

• Point cloud fusion techniques should be used to generate more 
dense point clouds

• Reconsider sensor selection
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Competition Results:
Stowage

Due to a judging error (we were given the 
wrong input JSON file), we ended up running 
our robot twice. 

During the first run, we successfully put 7 
items back onto the shelf. Our JSON was 
scored as perfect due to the organizers error, 
giving us a score of 88. 

During the second run, we successfully picked 
8 items but were deducted for a 
misidentification, scoring 77.

Picking 

During our picking run, we successfully picked 
4 correct items but picked one incorrect item, 
giving us an overall score of 33 points. 

Due to some of our go/no-go criteria on which 
items to pick to maximize score, we only 
attempted picking up items in 7 of 12 bins, 
which was a bit of a disappointment to watch 
but definitely the right call due to all our 
previous testing.
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Additional Lessons Learned
• Improve traceability between off line testing and running the robot

• Dedicate time to optimizing score

• Make everything run as fast as possible

• Keep up good software development throughout the development 
process

• Plan shipping, competition setup, and system verification well in 
advance 
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Questions
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SVE:
Testing Results Breakdown

Overall Results Failure Breakdown

Total Runs Successes Failures Overall % Segmentation ID grasping Suction arm motion

203 96 107 47% 11 35 44 12 5
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SVE Encore:
Status
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Upper 73.0%

mean 62.4%

Lower 51.9%

std 10.6%

7 Random Shelf Configurations

244 Grasp attempts

147 Successful Picks

97 Failed Picks



Vision: Stowage Identification
Stowage Identification Architecture 5/7/2016 -----------------------------------------------------
2nd slave computer will run kinect and tell the master which bin to go to and provide JSON changes
Filessrc/preprocess_id_image - subscribes to kinect and segments pc to cnnscripts/perception/* - Utilities for running CNN. Server for getting predictions 
‘stowage_perception_srv’scripts/prediction_utilities.py - utilities for performing prediction. Can be used for offline simulations

scripts/stowage_perception_server.py - Main supernode; manages userdata and provides master a server interface
Network-setup.bash - exports ROS_IP and other network params

MessagesTo conform to new proposed architecture, should be contained in harp_apc/apc_msgsMaster-Slave Interface

Stowage_bins2targetapc_msgs/bin[] bin_contents

◦ 5int8[] tote_contents

◦ ---int8 target_bin

Stowage Perception Functions, upon service call...Call preprocess_image server to perform pointcloud segmentation

Call CNN to perform predictionUpdate Item belief state

◦ Perform prediction on all available predictions

◦ Does not renormalize after taking best guess ( it provides betteroverall accuracy)Assign item to shelf bin

◦ If item is confusable -> send it to the bin with the confusable item

◦ If item is small -> send it to more dense bins

◦ If item is large -> send it to less dense bins
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