
1/28/2016 

 
 

  

Progress Review 7 
Individual Lab Report #6 

Abhishek Bhatia 
      

Team D: Team HARP (Human 
Assistive Robotic Picker) 
Teammates: Alex Brinkman, Feroze 
Naina, Lekha Mohan, Rick Shanor 

 
 



1 | P a g e  
 

I. Individual Progress 

 The official rules for the Amazon Picking challenge were out during December and the 
major update was that the time for picking task was reduced from 20 mins as of last year to 
15 mins, to carry out the whole operation. The second major update was addition of another 
task ‘Stowage’. We had analysed PR2’s performance and concluded that it was not fast 
enough for the whole operation and might not give us a competitive edge for the competition 
[1].  
 

Hence, for the Progress Review 7, team’s major challenge was to transit from PR2 to 
UR5. Over the break we did a lot of research on UR5 and figured out pros and cons for both 
the platforms PR2 and UR5. PR2 is a great research platform and has a lot of functionality, 
moveable base, moveable spine, 2 arms (presents working in parallel capability) but these 
functionalities also increase complexity and as far as Amazon Picking Challenge is concerned, 
we do not require these extra functionalities. UR5 has no moveable base, but can access the 
complete shelf space, including all the shelf bins, moreover is much faster as compared to 
PR2. The biggest plus is the ROS support that gave us the confidence in transitioning from PR2 
to UR5. 
  
 My main task for this transition was to work with Alex and modify our state controller 
to have UR5 as the platform. There were certain challenges associated with this task, the 
major challenge was that PR2 was based on ROS Groovy and UR5 on ROS Indigo. Alex started 
with setting up the baseline for our system with UR5. He developed a basic script that 
launched UR5 in Rviz. I took over from there to make UR5 work with interactive markers. Basic 
idea was to add two interactive markers within the configuration space of PR2 such that the 
arm can move between the two markers. The major problem with this was setting up the 
transforms properly. With PR2 on ROS Groovy, we were using the 'tf' package as part of our 
TFUtils file to keep track of multiple coordinate frames over time. With ROS Indigo, we 
discovered that the TFUtils file was not giving us the transforms correctly possibly because of 
some incompatibilities between 'tf' features and ROS Indigo. I then modified the 'tf' based 
framework to 'tf2' based, considering ‘tf2’ being the advanced package with similar 
framework. But, with 'tf2' package I was getting weird errors mostly related to 'tf2' package 
not being recognized. By experimentation, I figured out a similar package 'tf2_ros' that had 
the same functionality as 'tf2', and used it to generate and track these coordinate transforms. 
My script was getting compiled but I was still getting errors with the function 'wait and lookup' 
(an important functionality that is being utilized by our state controller) that keeps waiting 
for transforms and returns as soon as it gets one. This was later fixed after going through 
'tf2_ros' based tutorials, I figured out that the error was in the way I was passing the 
parameters to the tf2_ros lookup transform function [2]. 
 



2 | P a g e  
 

 
Figure 1: UR5 with interactive markers for target and order bin in Rviz 

 
After this, I worked on defining the static coordinate transforms for our new 9-bin 

shelf. Previously we had a 12-bin shelf model, but for our preliminary testing now, we have 
generated a 9-bin shelf with cardboards and to match that in simulation, I defined the static 
coordinate transforms with dimensions that match with the real shelf model. After this, Rick, 
Alex and myself worked together to integrate localization and other changes within our state 
controller and completed the transition from PR2 to UR5. We are able to get the complete 
functionality, as we had till FVE with PR2, with UR5 now. 

 

 
Figure 2: UR5 and coordinate frames for 9-bin shelf 

 



3 | P a g e  
 

 
Figure 3: Complete integrated system with UR5 with custom end-effector, 9-bin 

shelf collision mesh, real-time shelf stream from Kinect2 and localization 
 
Another major update in APC rules this year is that the number of items in each shelf 

bin could be upto 10 and items could be partially occluded. This could be problematic for our 
system as our current object recognition algorithm that is based on ICP is not supposed to 
work well with highly cluttered shelves. To mitigate this risk, we started exploring other 
alternatives for object recognition. Rick found out two existing frameworks for object 
recognition 'Simtrack' and 'Object Recognition Kitchen'. Rick started exploring 'Simtrack' and 
I started with exploring 'ORK'. Object Recognition Kitchen (ORK) is a project originated at 
Willow Garage for object recognition. There is currently no unique method to perform object 
recognition. Objects can be textured, non-textured, transparent, articulated, etc. For this 
reason, the Object Recognition Kitchen was designed to easily develop and run 
simultaneously several object recognition techniques [3].  
 
ORK framework is based on ROS Indigo and takes 3D models of the objects as inputs and 
carries out object recognition task. ORK also provides an option to build our own database to 
store 3D models and reuse them in any point of time. But the only drawback with ORK is that 



4 | P a g e  
 

it is based on Kinect1. All the topics that it subscribes to are published by Kinect1 framework. 
Kinect2 publishes different topics. Hence, to make it work, we have to change either the ORK 
source code or develop a wrapper around the ORK packages, that'll subscribe to Kinect2 
topics/messages and publishes Kinect1 topics/messages which will be further subscribed by 
ORK. But before I make that modification, I wanted to ensure that the results from this 
framework by using Kinect1 are good enough such that ORK presents itself as a backup incase 
ICP performs bad with cluttered shelves. I started playing around with tabletop detection and 
object recognition tutorials. Currently, I am working to generate a database with 3D models 
of the objects from the APC item dictionary and use them for object recognition. 
 

II. Challenges 

 I faced a lot of challenges while working for this progress review. The first was while 

modifying the TFUtil file to make the transform package work for ROS Indigo with UR5. I could 

not find much support in terms of the documentation online that could help me resolve this 

issue. I took some help from my teammate Alex and also Andrew Dornbush (SBPL lab). 

Andrew suggested moving over to rewriting the TFUtil again in ‘C++’ than ‘Python’. Finally, 

Alex suggested a ‘tf2_ros’ tutorial that helped me resolve the issue.  

 Later, I faced issues while trying to setup the Object Recognition Kitchen. I faced issues 

with the openni driver for Kinect1. The ROS package for openni was not recognizing the 

Kinect1. I later figured out that this issue was possibly because of incompatibility between 

openni driver and ROS Indigo. The support for openni drivers with latest versions of ROS had 

been deprecated. To resolve this issue, I used the freenect_launch driver for Kinect1.  

 

III. Teamwork 

This week’s progress review was crucial for the whole team as we wanted to change our 

system from PR2 based to UR5 as soon as possible. As always, we had divided this transition 

into various tasks and worked together to complete this before the progress review. We all 

updated our systems from Ubuntu 12.04 based to Ubuntu 14.04 and ROS Groovy based to 

ROS Indigo. 

 

Alex: Alex took the charge for modifying our state controller to have UR5 as the platform and 

get us to the same state as we were during the Fall Validation Experiment with UR5. Besides, 

he also worked on redesigning the suction gripper design considering UR5. 

  

Feroze: Feroze mostly worked on making the collision model work as part of our state 

controller. He first worked on testing this collision framework with PR2 and then added the 

same for UR5. Finally, he worked with Alex to integrate this functionality as part of our state 

controller.  

 



5 | P a g e  
 

Lekha: Lekha worked on setting up input handling block and integrated it with our state 

controller. Later, she worked on Grasp Planning, to determine safe grasp points for the 

suction based end-effector to grasp the items off the shelf, safely. 

 

Rick: Rick primarily focussed on integrating the complete vision pipeline as part of our state 

controller within ROS. Besides, he worked on setting up the localization for our system. 

 

Abhishek: I worked on fixing the issue with transforms that helped us enable the interactive 

markers, then worked on defining the static coordinate transforms for our new 9 bin shelf 

and further worked on Object Recognition Kitchen framework. 

 

IV. Future Plans 

 My major targets for the next Performance Review are to get some results from the 

Object Recognition Kitchen framework with Kinect-1, verify its compatibility with Kinect-2 and 

confirm if we can use it as part of our system. Besides, I plan to work on defining an approach 

for the stowage task. We also plan to work on setting up UR5, incase we get the arm early 

next week. And finally, work with the team to generate a suitable video required for official 

APC 2016 registration.  

 

IV. References 

1) http://amazonpickingchallenge.org/  

2) http://wiki.ros.org/tf 

3) http://wg-perception.github.io/object_recognition_core/ 


