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Individual Progress 

 Over the last two weeks, I finished implementing and integrating the entire vision pipeline. First, I 

finished training a CNN that identifies superpixels. Next, I implemented a conditional random field 

algorithm that determines item centers and grasp points based on adjacent probabilities. Finally, I 

integrated the entire vision pipeline with the robot state machine. Using this vision process, we were able 

to make the robot pick up items of interest from the shelf. In addition to this work, I also helped with 

system integration and testing.  

 As previously demonstrated, the first step in the identification pipeline is to mask the shelf. The 

masking operation is performed by using the SegNet CNN model to label each pixel shelf or item. The 

results of Segnet can be seen in figure 1. 

 
Figure 1: Shelf Image (left) and Filter Output (right) 

Next, I apply the SLIC algorithm to the filtered image. SLIC divides an image into approximately K 

desired superpixels based on edges, distances, and colors. I iterate through each superpixel, and save 

the ones that are not black. In addition, I calculate the edge region of each segment and cache its 

neighbors.  

 

 
Figure 2: SLIC superpixeled image 



After deciding upon a superpixel algorithm, the next step was to train a CNN based on the 

AlexNet architecture. To train the network, we captured about 100 images of each item on a turntable. 

Then, we applied the superpixel algorithm to the training data, generating almost 250,000 training images 

in total for the 38 items. The network is then trained for almost 12 hours on an Nvidia 980 until losses 

converge, indicating the network has achieved optimal training. 

During test time, after breaking the image (figure 2) into superpixels, we classify each superpixel 

using the CNN. Figure 3 show a few examples of classified output. Each superpixel takes around .2 

seconds to be classified. The probabilities are normalized after setting the probabilities of items not on the 

shelf to zero. By reducing the probability vector based on knowledge of shelf items, we are able to make 

much more accurate predictions.  

 
Figure 3: Labeled superpixels 

After calculating a probability for each superpixel, a graph is generated connecting neighboring 

superpixels. An example of such a graph is shown in figure 4 below. After generating a graph, each 

superpixel is scored based on its predicted probabilities as well as its neighbors predicted probabilities. 

This enforces smoothness and rewards similar classifications in a region. Finally, a single super pixel is 

labeled for each item as the maximum of the calculations above.    

 
Figure 4: Superpixel graph and labeled nodes 

 Finally, after identifying the centroid label, we apply a floodfill-like algorithm that expands out and 

labels neighboring pixels based on their predicted probabilities. This allows us to label each pixel in the 

image. Figure 5 shows a fully labeled image. The eggs, the Elmer’s glue, and the LOL joke book are all 

accurately labeled. After labeling each pixel in the image, these results are passed to the grasp planning 

algorithm, which determines the optimal way to pick up the item of interest.   



 
Figure 5: Fully labeled identification results 

Challenges 

 After weeks of hard work, we finally achieved multi-item picking from the Kiva shelf. As a team, 

grasping in the new, more confined space was difficult to achieve. Personally, my biggest challenge was 

getting this entire vision pipeline running. I tried many different superpixeling methods, training scenarios, 

and global scene optimization techniques. Several iterations later, I finally finished the above pipeline. On 

test cases, the algorithm identifies items with at least 85% accuracy. 

 

Teamwork 

 Alex has worked hard on robot control and motion planning. He has debugged many problems, 

including localization and shelf collisions. In addition, he integrated a longer end-effector so that we can 

reach items in the back corners of the shelf. Both Alex and Feroze worked on grasping. They iterated on 

our normal-based approach so that we have more control over end-effector placement. Abhishek helped 

me with perception tasks, including algorithm testing. In addition, he worked on high level scripting. He 

and I began investigating a verification identification algorithm after we remove an item from the shelf 

before we place it in the bin. Finally, Lekha and I built 3D models for items with robust geometries for use 

in PERCH.  

 

Plans 

 Before the SVE, I plan to expand the vision algorithm from 11 items to all 38 items. This will 

require retraining the CNN with our expanded collection of turntable images. However, I don’t anticipating 

scaling to have any large impact on accuracy, since it is still an N choose 1 problem where N is the 

number of items on the shelf. After this, I plan to incorporate error checking into the perception system. 

We will not want to attempt item pick up until our perception confidence is high. Finally, the current 

perception pipeline runs in about 30 seconds. I am going to benchmark our code and try to speed up the 

pipeline. In addition, we will probably parallelize processes, so we can do grasping and motion planning 

on one shelf while processing images from another.  


