Individual Lab Report 4

Progress Review 3

Pulkit Goyal

November 10, 2017

Team F - Falcon Eye
Pulkit Goyal
Pratibha Tripathi
Yuchi Wang
Rahul Ramkrishnan
Danendra singh

Individual Progress
| primarily contributed in running the variation localization sensors(IMU and Encoders) on
Husky, configuring the WiFi network for the system, teleoperation setup of Husky and attempted
to connect the Bebop2 as a client to the network instead of Host.

1. IMU
I, along with Pratibha worked on reading the data from um7 IMU. First step was to
finalize the rx-tx connection for the IMU to read the data in the Husky’s mini-pc. We finalized on
a ftdi cable to connect the IMU to USB port on Mini-pc. Initially we tried to read the raw data
from the serial port in ubuntu using cat command. We faced some permission issues, which is
explained in detail in challenges section. After that we installed the ROS driver for the IMU,
directly reading the rostopic echo /imu/data.

X: -0.9623646924

y: 0.0467620349

Z: 0.2546567098

w: 0.0824462008
prientation_covariance: [0.802741552146694444, 0.0, 0.0, 0.0, 0.0802741552146694444, 0.6, 0.0, 0.0, 0.007615422629706791]
pngular_velocity:

x: -0.000433264905381

y: -8.01257299392e-05

Z: 0.00164294646858
bngular_velocity_covariance: [1.0966208586777776e-06, 0.0, 0.0, 0.0, 1.0966208586777776e-06, 0.0, 0.0, 0.0, 1.0966208586777776e-06]

z: -18.3205838572
inear_acceleration_covariance: [©.0015387262937311438, 0.0, 0.0, 0.0, 0.0015387262937311438, 0.0, 6.8, 0.8, 0.0015387262937311438]

secs: 1510367890
nsecs: 380743275
frame_id: imu_link
prientation:
: -0.9630696477
.0457885252
.2534817843
w: 0.0779814839
prientation_covariance: [0.002741552146694444, 0.0, 0.0, 0.0, 0.002741552146694444, 0.0, 0.0, 0.0, 0.007615422629706791]
bngular_velocity:
X: 9.57219808555e-05
y: 0.000906044008306
Z: 0.00053180024025
bngular_velocity_covariance: [1.0966208586777776e-06, 0.0, 0.0, 0.0, 1.0966208586777776e-06, 0.0, 0.0, 0.8, 1.0966208586777776e-06]
inear_acceleration:
X: -0.00966762102101
0.045040169813
z: -10.3219048767
inear_acceleration_covariance: [0.0015387262937311438, 0.0, 0.0, 0.0, 0.0015387262937311438, 0.0, 0.0, 0.0, 0.0015387262937311438]

Fig1 - IMU reading on Terminal
As of now we are just reading the raw values of IMU, acceleration and orientation values. We
need to apply Dead Reckoning to get the location of Husky.

2. Encoders

| worked on this with Pratibha. Husky’s encoders are in-built and the data is received
from the communication cable which is connected via Serial port between Husky and mini-pc.
The Husky’'s ROS driver has odometry node which publishes encoders data on rostopic echo
/odometry/filtered. We carried out some experiments about the drift of location data coming from
odometry. The location values from Odometry were drifting significantly after 1-2 m of distance.

712538791432e-28, 0.0, 0.0, 0.0, -6.503955193979679e-24, -3.0307712538790953e-28, 1.0939422958858538e-06]

header:
seq: 118450
stamp:
secs: 1510367972
nsecs: 161909342
frame_1id: odom
child_frame_id: base_link
pose:
pose:
position:
x: 0.0
y: 0.8
z: 6.6
orientation:
X: -6.37604315236e-29
y: 3.21864788558e-28
z: -0.442509996812
w: 0.89676357125
covariance: [10363820592368.445, 0.03635969590098398, B8.520283743896955e-20, 0.0, 0.0, 0.0, -0.0363586267426399, 10363820592368.445, 3.30683
42672432725e-20, 0.0, 0.0, 0.0, 8.520283743897075e-20, 3.306834267243364e-20, 4.999195507994937e-07, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 4.998391568
328793e-07, 1.6678553318393462e-31, 7.95177515430472e-21, 0.0, 0.0, 0.0, -1.6678553318393462e-31, 4.998391568328793e-07, 6.096987264989151e-2]]
, 8.8, 6.0, 0.0, 7.951775154304536e-21, 6.096987264989395e-21, 7465401.816061982]

angular:

X: -5.04222377974e-22

y: -2.34976604392e-26

Z: 0.00110441355615

covariance: [22909286.992094137, -2.5624345518324913e-29, -1.0250814179884158e-24, 0.0, 0.0, 0.0, -2.562434551832472e-29, 22909286.992094137

, -7.B5969957997711%e-25, 0.0, 0.0, 0.8, -1.0250814179884158e-24, -7.859699579977118e-25, 4.998793380123498e-07, 0.0, 0.0, 0.0, 0.6, 0.0, 0.0,
4.995180581261081e-07, 4.0383040187555145e-28, -6.5035526716876895e-24, 0.0, 0.0, 0.0, 4.0240741562499773e-28, 4.995180581261081e-07, -3.0307|
712538791432e-28, 0.0, 0.0, 0.0, -6.503955193979679e-24, -3.0307712538790953e-28, 1.0939422958858538e-06]

Fig2 Encoders reading on terminal
Rahul has worked on reading the data from GPS.
We need to use EKF to fuse the location value from GPS, Encoders, IMU and finally
location of april tag placed on husky to get better localization accuracy of Husky.
But as the autonomy of Husky is planned for Spring semester, we plan to take this up
forward in next semester.

3. Tele-operation of Husky

I, along with Yuchi, worked on teleoperation of Husky. In this task we were required to
operate the husky using the gamepad controller and gui both present on the remote pc
connected to the Husky’s mini-pc with local WiFi network. We executed all the ROS nodes
running on husky’s mini-pc normally and used the commands on remote PC to connect it to the
mini-pc’'s ROS master on network. We executed following commands on remote-pc after
connecting the gamepad controller to it:

Export ROS_MASTER_URI=http://192.168.1.127:11311
192.168.1.127 - IP of the Husky’s pc.
11311 default port of ROS master node.

Rosrun joy joy_node _autorepeat_rate:=60
To read the data of the joystick connected on the remote pc at rate repeat rate of 60.

Rosrun topic_tools relay /joy /joy_teleop /joy
Relaying the joy topic as joy_teleop which will be relayed to ROS master on network.

We also had to add the hostname of the remote pc to husky’s mini-pc’s host file and vice-versa.

http://192.168.1.127:11311/

frame_id: '’
axes: [-6.06, 6.6, 0.0, 0.6, -0.0
buttons: [0, @, 6, 6, 68, 6, 0, O

]

]

header:
seq: 5915
stamp:
secs: 1510368762
nsecs: 78846225
frame_id: "'
axes: [-0.0, 0.0, 0.0, 0.0, -0.0,
buttons: [0, ©, 6, 60, 6, 6, 0, O

2

Fig3 Transmitting gamepad values on network

4. Rviz

Pratibha and me, subscribed to all the topics created above in Rviz. We analyzed data from IMU and

Odometry in Rviz. We also added a separate node named Interactive Markers. It helped us control the Husky
with the GUL.

fhyinteract | % Move Camera [TjSelect < FocusCamera == Measure # 2DPoseEstimate , 2DNavGoal @ PublishPoint ok =

I3 Displays %
» i Global Options
+ v Global Status: Ok

v

> @ Grid =
+» @ PointStamped =
» #\ Odometry & .
- & twist controller for robot
» & Effort =
» ~ Pose =
» #\ Odometry &
> & InteractiveMarkers &
v 3= TF &
rear—tUrjper_link
e
N\ _zedr leftATheel_link
rear_right_} 1_lin
top Pile ‘g=Hink
tnp&ﬂ@, Nk
prer e
%W t_\wheel_link
front_right_whee! § nk
—
front_burper_link
Color
Color to draw the arrow.
Add
(© Time .
ROS Time: [1510369028.56 | ROS Elapsed: [161.61 wall Time: | 1510369028.59 | Wall Elapsed: [161.52] Experimental
Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel:: Zoom. Shift: More options. 30fps

Fig4 - Combined data on Rviz

5. WiFi router’s SSID configuration
We(me and Yuchi) created a SSID on the router and enabled dhcp services on the router. We also
provided static IP to Husky’s mini-pc and remote pc’s WiFi ports.

6. WiFi connection’s range test

We(Me and Pratibha) tested the range of connection with remote-pc and husky’s pc with the setup
router. Initial range of the network was calculated to be 27 meters. As the size of the testing arena is specified
as 50m x 50m in requirements, we extended the range to 58m by replacing the router’s default antennas with
the bigger ones we got from MRSD lab. As we plan to place the base station with remote-pc in the middle of
the arena, we will have range of 50m around the router.

7. Bebop connection to the setup Wifi network as a client

| worked on this with support from Yuchi. Bebop is configured by default to host it's own network. We
accessed the husky operating system using telent to change the settings so that Bebop can connect as a client
to the network hosted by the WiFi Router. After many attempts we couldn’t make it work, we are working on
the plans to make the Bebop connect to the network.

Challenges
1. The IMU which we connected using ftdi on USB was getting read as serial device in
/dev/ttyUSBO. But we were not able to read the data even with sudo permissions. After
thorough analysis we realised the permissions of ttyUSBO was set to some random user
and group.

® =3 File Edit View Search Terminal Help

[INFO] [1510366157.687324749]: Attempting reconnection after error.
ACrCadministrator@teamf:~$ rosrun um7 um7_driver _port:=/dev/ttyUsBe

Attempting reconnection after error.
um7_driver successfully connected to rial port fdev/ttyUSBO.

administrator@teamf:~

administrator@teamf: /devs 1s -1lsh ttyUSB@®
® crw-rw-rw- 1 root dialout 188, ©® Nov 10 21:09 ttyUSBO
administrator@teanmf: /devs I

Fig5 - Not able to read IMU data

So we used chown to change the ownership of the port to the user we were logged in with.
chown administrator:administrator ttyUSB1

~§ rosrun um7 um7_driver _port:=/dev/ttyUsB1
INFO] [1510367776.995424666]: um7_driver successfully connected to serial port /dev/ttyUSBi1.
INFO] [1518367777.010771161]: Received packet 82 without data.
INFO] [1518367777.011686435]: Setting update rate to 20Hz
INFO] [1510367777.020691518]: Received packet 82 without data.
INFO] [1510367777.026746400]: Received packet 84 without data.

INFO] [1518367777.032839363]: Received packet 85 without data.
INFO] [1510367777.038854517]: Received packet 86 without data.
INFO] [1510367777.044724087]: Received packet 88 without data.
INFO] [1518367777.045356575]: Sending command: zero gyroscopes
INFO] [1518367777.050930065]: Received packet ad without data.

Fig6 - Readable IMU data

2. For teleoperation of husky on the network, after doing all the setup we were facing
problem in sending the gamepad controller data across the ROS master running on
network. After intense debugging we realised that we are required to add the hostname
of one system to another to make the system work.

3. Even after trying the methods given on internet we tried to change the network settings
of Bebop to make it a client instead of a host. We are discussing the issue with the
developer community on the forums. Still waiting for the reply.

4. We tried detection of April tag placed on ground using Bebop’s camera feed. We are
able to localize the april tags but the location is very unstable. We need to try different
filters as suggested by our sponsors.

5. We found it really difficult to test the system outside in the cold weather. Testing outside
becomes necessary as we are dependent on the GPS values.

Teamwork
We realised working in pair of two makes both the team members efficient as you always have
second opinion about any issue, so you tend to solve it faster. Also, it helps to manage the
unavailability of team members as two people have the knowledge about running a particular
component or module.

Yuchi worked with me together on WiFi SSID setup, Bebop as a client setup,
teleoperation of Husky as explained above. Pratibha worked with me to integrate the IMU and
encoders with ROS installed on Husky. Yuchi also worked on April tag implementation using
camera feed from Bebop. Danendra majorly worked with Yuchi on testing of Bebop’s GPS and
it's autonomous navigation. He also worked with pratibha to design the PCB for the system.
Rahul worked on integration of Velodyne puck with ROS drivers for obstacle detection. He also
worked on setting up the GPS initially with arduino and then with the ROS driver. He also wrote
a publisher to convert the GNSS data to GPS coordinates. Pratibha and Rahul worked on
fabricating and assembling the mechanical setup as designed in the CAD model previous week.

Future Plans

This week we had separate meetings with all the stakeholders including progress review with
the TAs , John and also with our sponsor Katia. We received a lot of feedback to make the FVE
a success. We plan to heavily focus on the FVE and incorporate those feedbacks to solve the
current issues in this week.

- Connect Bebop 2 with the router network: Pulkit and Pratibha

- April tag location with Bebop: Yuchi and Rahul

- Bebop’s GPS based navigation: Danendra and Yuchi

