Individual Lab Report 2

Progress Review 1

Pulkit Goyal

October 20, 2017

Team F - Falcon Eye
Pulkit Goyal
Pratibha Tripathi
Yuchi Wang
Rahul Ramkrishnan
Danendra singh

1 Individual Progress

Last week, | primarily contributed in setting up the Zotak mini-PC for Husky and make
the Husky run with Game Controller. | was also in contact with Clearpath Robotics
representative for debugging of the issue.

11 Husky Robot

Husky is a medium sized robotic development platform. Its large payload capacity and
power systems accommodate an extensive variety of payloads, customized to meet
research needs. Husky is fully supported in ROS with community driven Open Source
code and examples. We borrowed a Husky from George Kantor for MRSD project. We
connected the Husky system with the Mini-PC using RS232 cable for the
communication.

1.2 Zotak-Mini PC Setup

Clearpath has a clone of basic ubuntu operating system which comes with all the husky
packages installed on it. | installed the clone on Mini-PC using Clone Zilla. After cloning
the basic image onto the Husky robot, Clone Zilla is supposed to download the full
image from the internet during installation. The mini-pc couldn’t take IP from the DHCP,
so | had to configure static IP for the mini-PC to be able to connect to the network for
the setup. The standard image provided by clearpath does not have a GUI, as team
was having difficulty in accessing the mini-pc using terminal, | installed a lighter GUI,
Ixde, on the mini-pc.

1.3 Communication between Mini-pc and Husky Robot

When the mini-pc was fully setup we were having difficulty in communicating with the
husky using RS232 cable. | found that there was a fault with the RS232 to USB cable. |
verified this by checking the data exchange and reading the data received from husky
on terminal.

1.4 ROS for Husky

ROS has several nodes such as diagnostics, husky node, teleop and many more which
are essential for robot operation. | went into detail about all the available support from
ROS.

base_controller_spawner

J/base_controller_spawner

S

Joy_teleop

twist_mux

Powist_mux —|-{

husky_velocity_controlier

/husky_velocity_controller/cmd_vel |

husky_velocity_controller
—| fhusky_velocity_controller/cmd_vel

‘ J[husky_velocity_controllerfodom r

=¥

twist_marker_server

Jwist_marker_server/cmd_vel l

JThusky_velocity_controller/odom r-

husky_ni d

—

]

rostopic_S018_1508546144823

Irostopic_5018_1508546144823

robot_state_publisher

e]

f_localization

Jekf_localization

Jrobot_state_publisher

—% M_static |1

Idiagnostics

diagnostic_aggregator

Idiagnostic_aggregator

| read about the upstart services, as the image obtained from clearpath has an upstart
service which fires up all the required ROS launch file when the mini-pc is starts. | also
located the file where the logs are generated for this service.

admlnlatrator@teamf ; rosnode list
controller Hpawner

/ oy_te1eop,te]eop_twist_joy
/robot_state publisher
/ ut

itopic_5018_ 1508546144823
[twist _marker_server

sudo service
dministrator:
husky-core stop/waiting
administrator@teamf: sudo service
tart/running, proc
strator@teamf:~$ sudo ta
robot_state_publisher-1]:
s [husky _node-2]: arted wlth
ase_controller_spawner-3]:
[ePf Tocalization-4]:
[twist_marker server-5]:
twist mux-6]
[joy_teleop/joy_node-71:
y_teleop/teleop_twist_joy-
ator-97:
l:q'r]

L /

[INFO] [1508546308.1238

husky-core stop

husky-core start
78
/log/upstart/hus
started with pid [5
pid [5467]
started with pid [5468]

started with pid [5470]
started with pid [5486]
tarted with pid [5497]

started with pid [5503]

8]: started with pid [5514]

started with pid [5523]
[twist_marker_server]

Initialaized.

1.5 Debugging the Husky stop state
After the basic ROS setup. | tried reading the Gamepad controller in the
Mini-PC. | tried testing the gamepad input with jstest-gui.

5@ :

@ S @ Logitech Gamepad F310

Logitech Gamepad F310
Device: /dev/input/jsO

Axes

+
+

Axis 4 - 26681
Buttons
CEEEE >R B E A
[EI - D
Mapping_| calibration |

Close

After that | echoed the /joy_teleop/joy topic which is supposed to publish
the values of gamepad to the husky node for movement of Husky. The
values were being read by the controller node, but even then there was no
movement in the husky. After echoing /husky_velocity control/cmd_vel, |

), -8.8, 1.8, 1.8, 1.8]
»0,0,0, 0]

B, -0.8, 1.8, -6.8, 1.8]

| echoed the diagnostics and status topic to check the status of the robot.
The status topic gives the voltage and current values for battery, motor
drivers. After careful review, and comparison of the values with the ones
specified by clearpath for Husky. We concluded that motor drivers aren’t
getting voltage from the battery, because the status topic showed 24v for
the battery but Ov for left and right motor driver.

Hence, we opened the husky and verified that the fuses were intact. We
tried checking the motor drivers but the wires and casing was very neatly
routed and we decided to not open that up.

We borrowed another working Husky from NREC with help of Prof. Dimi. It
didn’t take us much time to run the Husky from NREC with help of setup we
did for George’s Husky. We used the same mini-PC and other accessories
with husky from NREC. Using NREC’s Husky as reference we debugged
issues with Kantor's Husky and got both the Husky’s working.

2 Challenges

We faced many challenges this week both technical and communication with our
sponsor. To start with we faced many issues in getting the Husky to run. We were also
struggling from very long about fitting our own interest with interest of our sponsor. We
went through many iterations of the use case with various stakeholders. We talked to
many experienced people about the scope of project that can be handled within an year
and also about the kind of experience that will be required in the team for the execution
of the project. After carefully considering all the factors and incorporating the
suggestions from our sponsor we rescoped our project. Our new case is as follow: We
developed a system with UAV and UGV where UAV will survey the area, and send the
traversable waypoints to UGV. UAV will help UGV to make informed path planning
decisions for unknown environment.

3 Teamwork

Me, Pratibha and Rahul were mainly focusing on making the Husky work.

The work for UAV, Parrot Beebop 2, was handled by Yuchi and Danendra. Danendra
interfaced the drone using ROS and Yuchi interfaced the drone using the SDK provided
by parrot. Both were successful in controlling the drone. We finalized on ROS as it has
quite a lot of support.

4 Future Plans

For next week | will focus on developing a high level control stack for the Husky with
encoders. Likewise, Yuchi and Danendra will on high level control of Beebop 2 drone.
We are currently able to give low level commands like move forward, backwards, right
or left to both UAV and AGV.

Rahul and Pratibha will focus on finalizing the GPS hardware to be used for Husky and
integrate that with ROS. They will also be evaluating the accuracy of GPS sensors
available in inventory.

