

Sensors and Motors Lab
Individual Lab Report 1

By Rahul Ramakrishnan

Team F:
Yuchi Wang
Pulkit Goyal

Pratibha Tripathi
Danendra Singh

13 October 2017

1. Individual Progress

My primary responsibilities for this lab we're to wire and control the servo by
taking inputs from the Potentiometer and to setup the hardware, develop a code
for the DC Motor Velocity and Position Control by taking inputs from the GUI
during manual control (later part done in collaboration with Yuchi). I also worked
on the troubleshooting part during integration with the other sensors and motors.
The final system is shown in the fig.1 below.

Fig.1 Final system

1.1. Potentiometer

The Potentiometer values were read from an Analog pin on the Arduino and an
Average Filter was implemented on the incoming Potentiometer values to receive
a reliable input. The potentiometer should be wired so that its two outer pins are
connected to power (+5V) and ground, and its middle pin is connected to analog
input 0 on the board.

Fig.2 Potentiometer

[Retrieved from https://en.wikipedia.org/wiki/Potentiometer]

https://en.wikipedia.org/wiki/Potentiometer

For the Servo motor control, the filtered Potentiometer value was directly
mapped to an angle between 0 – 180 degrees. For a change of Potentiometer
value, a mapping to a set angle is done according to Table 1.

Table 1: Potentiometer mapping to servo angle

1.2. Servo

Servo motors have three wires: power, ground, and control. The power wire is
connected to the 5V pin on the Arduino board. The ground wire is connected to a
ground pin on the board. The Servo motor control pin was attached to PWM pin 9
and the servo.h header file in Arduino was used. The code for this system is
attached in the appendix.

 Fig.3 Circuit connection for servo and pot with Arduino
 [Retrieved from https://www.arduino.cc/en/Tutorial/Knob]

1.3 DC Motor

The given DC Motor (Cytron SPG30-60K) is rated to operate at 12V with no load
current less than 90mA and up to 1800mA when loaded [1]. Due to this possibility
of high current, a Solarbotics DC Motor Driver was used to implement Arduino
Logic commands in directing the Motor movements using I1 and I2 pins and
controlling its speed through PWM from the Arduino using the enable pin [2].
External power supply was provided to the motor driver which is used to drive the
motor.

Potentiometer readings Servo motor angle

0 0

1023 180

https://www.arduino.cc/en/Tutorial/Knob

1.4 Encoders

The motor has inbuilt encoders which was used to measure both the angle (i.e.)
position and velocity. It is a two-channel encoder. The angle is measured as a
direct function count where the count is incremented if both the channels of the
encoders are in same state and decrements in count if the channels of the
encoders are different states.

The encoder pins are attached to the interrupt pins and declared as interrupts
with the mode as CHANGE. The value from the encoders are fed to the Arduino
through pull-up resistors of 10k.

The velocity i.e. angular speed at any instant is calculated by the difference in the
angles at previous and current instants of time divided by the time taken to reach
the current angle from the previous position.

Fig.4 DC motor with driver

1.5 PID Control

The DC motor (Cytron SPG30-60K) was driven in two different modes.
They were:

1. Velocity Control
2. Position Control

1.5.1 Velocity Control

For the velocity control, the velocity in RPM was set by the user in the GUI. The
current speed was calculated by the change in angle/position at a fixed time

duration. The error was calculated by difference in the setpoint velocity and the
current velocity.

𝑒𝑟𝑟𝑜𝑟, 𝑒(𝑡) = 𝑝(𝑑𝑒𝑠𝑖𝑟𝑒𝑑) – 𝑝(𝑐𝑢𝑟𝑟𝑒𝑛t)

This error is subtracted from previous error to calculate he change in error and is
the error is added overtime to calculate the total error. All these parameters are
used to calculate the correction term and is given to the PWM pin to control the
speed.

The calibrated parameters for the velocity control were Kp =2, Ki =0.02, and
Kd=0.1. The maximum overshoot was 3%.

1.5.2 Position Control

For the position control, the position in angles is set by the user in the GUI. The
current position was calculated by the count from encoders. The error was
calculated by difference in the setpoint angle and the current angle. This error is
subtracted from previous error to calculate he change in error and is the error is
added overtime to calculate the total error. All these parameters are used to
calculate the correction term and is given to the PWM pin to control the position.

The calibrated parameters for the position control were Kp =5, Ki =0.00, and Kd=2.
The maximum overshoot was 1 degrees.

The process of PID control was the following:

1. Get the position/velocity from user via GUI.
2. Measure current value (velocity or position) from Encoder Counts and
Time.
3. [PWM] = PID (Setpoint, current value).
4. Send PWM and direction command to motor.
5. Goto 1.

2.0 Challenges

2.1 DC Motor PID control

One of the major challenges for me was the tune up process of the parameters
for both position and velocity. It was tedious and iterative process and the most
difficult part being that the calibrated parameters weren’t working all the time.

There was so much uncertainty associated with the system due to vibrations,
voltage drops etc.

Accounting for all these was an extremely tough task. Finally, we reached on a set
of parameters which was an average of all the working parameters that we
calibrated on before and it worked just fine. This was the case for both position
and velocity.

2.2 Servo Motor

The other difficulty was to figure out why the DC motor wasn’t working when
plugged into PWM pin 10 while integrating the system as it was working fine as a
sub-system. The problem was that when we used servo.h header, it allots both
pin 9 and 10 for servos by default. This took me a while to debug but eventually
had it working by switching it to other PWM pin.

3. Teamwork

Yuchi Wang: Force sensor, PID control
Pulkit Goyal: Graphical User Interface
Pratibha: Servo with IR
Danendra Singh: Stepper and Slot sensor

The entire team of 5 started working together for this lab assignment at our
workbench which made possible the resolving of queries and conflicts at one
place instantaneously which wouldn’t have been possible if we had worked
independently. Yuchi was in-charge of software integration combining codes from
all the members. Pulkit had been working on the entire GUI part and made it
ready for interfacing with the Arduino. Pratibha and Danendra did the role of
combining all the sensors and motors on one board to be ready for integrated
testing. I took the role of trouble shooting errors while integration of hardware
and software. I also involved myself in the software tuning of the control loops
with Yuchi.

4. Future Plans

We just got the husky batteries and communication cable delivered. We are
currently working on the husky to get it to move. We are having a lot of driver

issues and are trying to resolve them. Meanwhile we are planning to have a few
test flights with the new drones we got from our sponsor (Parrot Bebop 2). We
have to figure out the support for the drone’s SDK. We are waiting for acquiring a
Velodyne puck to get started on it. Studies are being done on the various
algorithms used for SLAM and path planning. We do have a backup option of
getting the husky from NREC if this husky fails to work. Our next milestone is to
make the husky move in the given direction for a given distance.

References

[1] "DC Geared Motor with Encoder SPG30E-60K," Cytron Technologies, [Online].
Available: http://www.cytron.com.my/p-spg30e-60k

 [2] "Solarbotics L298 Compact Motor Driver Kit," Solarbotics, [Online]. Available:
https://solarbotics.com/product/k_cmd/ .

[3] https://www.arduino.cc/en/Tutorial/Knob

[4] https://hackaday.io/project/11382-dc-motor-speed-control-with-pid

http://www.cytron.com.my/p-spg30e-60k
https://solarbotics.com/product/k_cmd/
https://www.arduino.cc/en/Tutorial/Knob
https://hackaday.io/project/11382-dc-motor-speed-control-with-pid

Task 7 (Sensors and Motor Control Lab) Quiz

1. Reading a datasheet
o What is the sensor’s range?
· +-3g (minimum) and +/- 3.6g (typical)
o What is the sensor’s dynamic range?
 20log(0.707*3.6/150ug) (u-micro)
o What is the purpose of the capacitor CDC on the LHS of the functional block
diagram on p. 1? How does it achieve this?
· Capacitor is used to decouple the accelerometer from noise on the power
supply. A single 0.1 uF capacitor, CDC, placed close to the ADXL335 supply pins is
used to achieve this.
o Write an equation for the sensor’s transfer function.
· 1.5 + 0.3x
o What is the largest expected nonlinearity error in g?
· +/-0.3% of full scale range
o How much noise do you expect in the X- and Y-axis sensor signals when the
sensor is excited at 25 Hz?
· 750ug/rms
o How about at 0 Hz? If you can’t get this from the datasheet, how would you
determine it experimentally?

• Set it to 0Hz

• Measure deviation from nominal voltage

• Convert the deviation into RMS
2. Signal conditioning
o Filtering
 a. What problem(s) might you have in applying a moving average?

• Ignores complex relationships in data [different frequencies].

• Slow response time for large windows.

 b. What problem(s) might you have in applying a median filter?

• High computational cost.

• May not be suitable for real-time applications where you want the
process to be fast [Incase if large window size].

o Opamps

1. In the following questions, you want to calibrate a linear sensor using the
circuit in Fig. 1 so that its output range is 0 to 5V. Identify which of V1 and V2 will
be the input voltage and which the reference voltage, the value of the reference
voltage, and the value of Rf/Ri in each case. If the calibration can’t be done with
this circuit, explain why.

V2 = Vin, V1 = Vref
Since the range of uncalibrated sensor is -1.5 to 1.0V,
Assuming,
Ri = 1
Rf = 1
Calculating using this gives:
Vref = -3 V.

Since the range of uncalibrated sensor is -2.5 to 2.5V,
Solving the system of equations with 2 equations and 3 variables returns no
solution.

[Calculations done using Wolfram Alpha].

3. Control

o If you want to control a DC motor to go to a desired position, describe how to
form a digital input for each of the PID (Proportional, Integral, Derivative) terms.

• Proportional term: Difference between desired and current position (error)

• Derivative term: Approximately equal to difference between previous
successive error values (change in error)

• Integral term: sum of previous errors (total error)

o If the system you want to control is sluggish, which PID term(s) will you use
and why?

I will use a P term as output is proportional to error and large gain is achievable.

o After applying the control in the previous question, if the system still has
significant steady-state error, which PID term(s) will you use and why?

I will use the integral term as it is proportional to sum of errors and will give that
extra magnitude to reach the desired output.

o After applying the control in the previous question, if the system still has
overshoot, which PID term(s) will you apply and why?

Derivative doesn’t allow rapid changes in output and provides damping. It
prevents drastic changes in output rate and hence prevents overshoot
(counteracting term).

APPENDIX

1) Servo with Potentiometer

void loop()
{
 val = analogRead(potpin); // reads the value of the potentiometer (value between 0 and
1023)
 Serial.println(val);

 double valr = map(val, 0, 1023, 0, 255); // scale it for the servo (value between 0 and 180)
 Serial.print("servo degree: ");
if (auto_read == 2)
{
 servo.write(double(val_read)); // sets the servo position according to the scaled value
}
else
{
 servo.write(double(valr));
}
}

2) DC motor PID_position and PID_velocity

volatile double setpoint ;
 double tar_spd ;
double Kpd = 5;// you can set these constants however you like depending on trial & error
double Kid= 0;
double Kdd = 2;
double Kps = 2;// you can set these constants however you like depending on trial & error
double Kid= 0.02;
double Kdd = 0.1;
double distance = 0;
float last_error = 0;
float error = 0;
float changeError = 0;
float totalError = 0;
float pidTerm = 0;
float pidTerm_scaled = 0; // PWM range we scale it down so that it's not bigger than 255

void loop()
{
if(guiinput == 1)
{
void loop_PID_SPD(tar_spd);
}
else
{
void loop_PID_POS(setpoint);
}
}

void loop_PID_SPD()
{
 PIDcalculation_SPD(); // find PID value
 if (tar_spd < 0)
 {
 digitalWrite(dir1, LOW); // Forward motion
 digitalWrite(dir2, HIGH);
 delay(50);
 }
 else
{
 digitalWrite(dir1, HIGH); // Forward motion
 digitalWrite(dir2, LOW);
 delay(5);
 }
 analogWrite(pwm, pidTerm_scaled);
 delay(100);
}

void loop_PID_POS()
{
 PIDcalculation_POS(); // find PID value

 if (angle > setpoint) {
 digitalWrite(dir1, LOW); // Forward motion
 digitalWrite(dir2, HIGH);
 }
 else
{
 digitalWrite(dir1, HIGH); // Forward motion
 digitalWrite(dir2, LOW);
 }

 analogWrite(pwm, pidTerm_scaled);
 delay(100);
}

void PIDcalculation_POS()
{
 angle = (1 * count); //count to angle conversion
 error = setpoint - angle;

 changeError = error - last_error; // derivative term
 totalError += error; //accumalate errors to find integral term
 pidTerm = (Kp * error) + (Ki * totalError) + (Kd * changeError); //total gain
 pidTerm = constrain(pidTerm, -255, 255); //constraining to appropriate value
 pidTerm_scaled = abs(pidTerm); //make sure it's a positive value
 last_error = error;
}
void loop_step()
{
vals = digitalRead(ruptPin);
 if (vals==0)
 {

 a++;
 digitalWrite(stp, HIGH);
 delay(5);
 digitalWrite(stp, LOW);
 delay(5);
 }
}

void PIDcalculation_SPD()
{
 prev_angle = (1 * count); //count to angle conversion
 delay(50);
 angle = (1 * count);

 curr_spd = (angle - prev_angle)/ 50;
 error = abs(tar_spd) - abs(curr_spd);

 changeError = error - last_error; // derivative term
 totalError += error; //accumalate errors to find integral term
 pidTerm = (Kp * error) + (Ki * totalError) + (Kd * changeError); //total gain

 pidTerm = constrain(pidTerm, -255, 255); //constraining to appropriate value
 pidTerm_scaled = abs(pidTerm); //make sure it's a positive value
 last_error = error;

}

void Achange() //these functions are for finding the encoder counts
{
 A = digitalRead(2);
 B = digitalRead(8);

 if(A==B)
 {
 count++;
 }
 else
 {
 count--;

 }
}
void modechange()
{

 currtime = millis();
flag = true;
}

