Heterogeneous Multi-Robot Sampling

System Development Review

Environmental Modeling

https://sea.mashable.com/culture/5813/the-amazon-forest-is-burningto-the-ground-heres-how-it-happened-and-what-you-can-do-to-help

https://www.nytimes.com/interactive/2019/08/24/world/americas/ama zon-rain-forest-fire-maps.html

Conventional Environmental Modeling

Satellite:

- Limited resolution
- Limited accuracy
- Huge cost

https://www.carbonbrief.org/explainer-how-surface-and-satellite-temperature-records-comp are

Conventional Environmental Modeling

Manual modeling:

- Discretized and limited coverage
- Tremendous manpower
- Inefficient update

http://www.ecofishresearch.com/our-services/nvironmental-compliance-effects-monitoring

Project Description:

We aim to deliver a UAV-UGV team that performs online environmental sampling and modeling collaboratively given an outdoor area with different terrains.

https://secondnexus.com/environment/yellowst one-caldera-nasa-supervolcano/

Wenhao and Katia, ICRA, 2018

Use Case: Scientific Monitoring

- We want to monitor temperature on CMU campus.
- Team SAMP launched Pelican and Jackal to help building temperature distribution over CMU campus.

Use Case: Scientific Monitoring

- Jackal and Pelican autonomously navigate around CMU campus to efficiently take temperature samples.
- Team SAMP gives an accurate temperature distribution for CMU campus within limited time.

Use Case: Scientific Monitoring

Team SAMP gives an accurate temperature distribution for CMU campus within limited time.

Requirement Modification

- Test field 20m x 20m x 5m 10m x 10m x 5m
- UAV autonomously avoids obstacles hovers over obstacles.

Current System Status

Current system status: Overall System Depiction

Current system status: Overall System Depiction

Master Computer : Functional Description

Procedure:

- Mixture of Gaussian Process Models for temperature modeling.
- 2. Expectation and Maximization for temperature prediction.
- 3. Interest point allocation
 - a. UAV/UGV Mobility
 - b. Utility
 - i. Prediction Accuracy

Master Computer : Current Stage of Development

• Sampling simulation

UGV Subsystem : Functional Description

UGV Subsystem : Current Stage of Development

- Updated Temperature Measurement
 - 0.107°C rms error
 - Converge time < 5s (from 23°C to 14°C)

UGV Subsystem : Current Stage of Development

- Localization performance improvement using RTK GPS:
 - Test result: accuracy ~0.2m
- Integration with Master Computer
 - Verified master computer-robot working pipeline.

UAV Subsystem : Functional Description

UAV Subsystem : Depictions

Modeling, Analysis, Results

Temperature Measurement Convergence Test

Challenges faced:

- Temperature measurement system refinement.
 - Problem : Low convergence rate.
 - Solution: Infrared sensor + Copper Pad.
 - Test results:
 - 0.107°C rms error
 - Converge time < 5s (from 23°C to 14°C)

Challenges remaining:

- Obstacle avoidance
- Communication latency

Temperature Measurement Convergence Test

• Convergence Speed Test (Ice Water Experiment)

- Converge time < 5s (from 23°C to 14°C)
- Measurement Accuracy Test
 - 0.107°C rms error

UAV Altitude Control Analysis

Hypothesis of Inaccurate Hovering:

- 1. **Poor altitude controller**
- 2. Height measurement sensor not working properly.
- 3. Noisy height measurement sensor source
- 4. Mismatch between sensor reading and actual height.

UAV Temperature Measurement Analysis

- Temperature Measurement Test: keep collecting temperature while commanding different height
 - Measurement : 13.8
 - Ground truth : 14.8

Challenges

UGV Subsystem :

Challenges faced:

- Temperature measurement system refinement.
 - Problem : Low convergence rate.
 - Solution: Infrared sensor + Copper Pad.
 - Test results:
 - 0.107°C rms error
 - Converge time < 5s (from 23°C to 14°C)

Challenges remaining:

- Obstacle avoidance
- Communication latency

UAV Subsystem :

Challenges faced:

- Temperature measurement system refinement.
- UAV Altitude Control Improvement
 - Problem: Inaccurate hovering position
 - Solution: calibrate before demo

Challenges remaining:

- Temperature measurement with airflow
- Trade-off between safety and measurement accuracy
- Communication latency

Master Computer :

Schedule

Fall Milestones

11 Sep

Setup UAV, UGV, Master Computer integration pipeline

Finish temperature sensor update with high accuracy and convergence rate.

23 Sep

09 Oct

Finish sampling using UGV in an obstacle-free region.

23 Oct

region.

Finish sampling using UAV in an obstacle-free

Finish heterogeneous sampling in an obstacle-free region

06 Nov

Finish heterogeneous sampling in the required region with obstacles

18 Nov

Location: The cut.

Equipment:

- Master Computer system
- UGV subsystem:
 - RTK GPS, Temperature measurement system (IR + Copper pad)
- UAV subsystem:
 - RTK GPS, Temperature measurement system (IR + Copper pad)
- Test facilities:
 - Ground truth temperature sensor, heat sources, Obstacles

Sequence of event

1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.

10m

Sequence of event

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.

10m

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.

Sequence of event

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature. 10m

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature.
- 5. Master computer selects the next interest points for Jackal/Pelican.

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature.
- 5. Master computer selects the next interest points for Jackal/Pelican.
- 6. Jackal/Pelican navigates to the target position.

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature.
- 5. Master computer selects the next interest points for Jackal/Pelican.
- 6. Jackal/Pelican navigates to the target position.
- 7. Jackal/Pelican collects temperature measurements.

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature.
- 5. Master computer selects the next interest points for Jackal/Pelican.
- 6. Jackal/Pelican navigates to the target position.
- 7. Jackal/Pelican collects temperature measurements.
- 8. Jackal/Pelican sends measurements back to Master computer.

- 1. Randomly place heat sources and obstacles in the 10m x 10m x 5m test field.
- 2. Manually collected ~20 temperature samples.
- 3. Master computer updates temperature model.
- 4. Jackal/Pelican asks master computer for the next location to measure temperature.
- 5. Master computer selects the next interest points for Jackal/Pelican.
- 6. Jackal/Pelican navigates to the target position.
- 7. Jackal/Pelican collects temperature measurements.
- 8. Jackal/Pelican sends measurements back to Master computer.
- 9. Loop through step 3 8 until reaching time limit or temperature model converges.

Performance matrix:

- 1. Robots should never hit obstacles.
- 2. The mean difference between 20 randomly-picked ground truth temperature measurement and model predictions should be less than or equal to 2 degrees.

Budge Status

Total Budget: \$5,000 Spent: **\$3,025 (60%)** Budget Left: **\$1,975 (40%)**

Budge Status /todo update

Part Name	Quantity	Unit Price	Total Price
Ground Truth Temperature Sensor	12	\$49.99	\$599.88
Ground Truth Temperature Sensor WiFi Gateway	1	\$99.95	\$99.95
Heat Source	2	\$16	\$32
Battery Monitor	1	\$9.89	\$9.89
On-board Temperature Sensor	4	\$13.99	\$55.96
Temperature Sensor Extension Cable	4	\$6.99	\$27.96
RTK-GPS Set (2 Rovers and 1 base)	1	\$2,000	\$2,000

Total: \$2,865.64

Risk Management

ID	Risk	Туре	Description	Likeli hood	Conse quence	Risk Reduction Plan
1	Electric System Failure	Technical	The battery or electric system fails due to incorrect operation.	2	4	Add reverse voltage and overvoltage protection.Document and regulate operation.
2	Work Delay	Schedule	Heavy workload puts the team behind the schedule	3 (-1)	5	 Optimize the WBS to break down the workload into manageable pieces.
3	Run Out of Budget	Financial	Run out of funds purchasing parts and repairing robots.	2	5	 Make purchasing decision carefully after trade study.
4	Latency for Real-time Operation	Technical	Communication latency between master computer and UGV fails real-time operation.	5 (+1)	4	 Use a higher speed router.
5	Poor Weather for Validation Tests	Schedule	Poor weather prevents/delays the system from outdoor experiments.	1	3	Monitor upcoming weather.Schedule tests beforehand.

Risk Management

ID	Risk	Туре	Description	Likeli hood	Conseq uence	Risk Reduction Plan
6	Even Temperature Distribution	Technical	Temperate difference in the test field is close to or smaller than sensor noise.	1	4	 Use sensors with higher sensitivities based on previous experiment results. Add heat sources to the test field to increase temperature variance.
7	Poor Localization Accuracy	Technical	Localization accuracy is not high enough considering the size of the test field.	1	5	 Use RTK GPS instead of built-in GPS.
8	Slow Temperature Convergence	Technical	Temperature converges too slow for ground truth and onboard sensors to meet the time requirement.	1 (-3)	5	Use temperature sensors with faster response time.

Updated Risk Management

- 1. Electric System Failure
- 2. Work Delay
- 3. Run Out of Budget
- 4. Latency for Real-time Operation
- 5. Poor Weather for Validation Tests
- 6. Even Temperature Distribution
- 7. Poor Localization Accuracy
- 8. Slow Temperature Convergence

Most Involved Portions

- System Integration
 - Start integration process early

Most Involved Portions

• Testing

- Plan ahead
 - At least 3 days ahead the testing
- Monitor Weather
 - Keep monitoring weather forecast
- Start system integration test early
 - Starting from PR7
- Unit tests
 - Test each small features/functions independently

Other Aspects

- Testing Facilities
 - Concerns:
 - Setting up Time
 - Safety
 - Providing temperature difference
 - Plans:
 - Test all the possible facilities early
 - Find the most suitable
- Course Load
 - Allocate heavier load to the beginning of the semester.
 - Set up milestones together and consider major homework/project deadlines

