
Carnegie Mellon University

16-681A

MRSD Project I

Individual Lab Report 02

Team C: COBORG

Author: Gerald D'Ascoli

Remaining Team C Members:

Jonathan Lord-Fonda | Yuqing Qin | Husam Wadi | Feng Xiang

Sponsor:

Biorobotics Lab

March 4, 2021

2

Table of Contents
1 Individual Progress ... 3

2 Challenges .. 6

3 Teamwork .. 7

4 Plans ... 8

3

1 Individual Progress
 This past week, I redesigned the voice control system to be more scalable with commands and

more controllable for tuning for any potential accuracy issues that may arise. The previous system I had

worked under my original test cases but was very difficult to scale and was either too sensitive on the

trigger word that it heard it all the time or, under different parameters, would not recognize the trigger

word at all. My initial plan of creating a custom dictionary to recognize only our commands and

keywords caused the sensitivity of recognizing these words to be much too high. Then the next plan to

try to add the new word “COBORG” to the existing dictionary resulted in the system still never

recognizing the word “COBORG” over other words in the standard US English dictionary. In the redesign,

I utilized the “keyword” function built into the pocketsphinx-python package to create a pseudo-custom

dictionary to raise the sensitivity for words to be recognized outside of the normal voice commands,

such as “COBORG” and “STOP”, without it being overly sensitive. To get the standard dictionary to

recognize “COBORG” more accurately, I added the word and the related word segments (sounds

interpreted by the NLP model) to the standard dictionary then re-trained the standard US English model

using TensorFlow to give priority to the word “COBORG”. The initial training went for over a day and

ended in failure because I had set the initial parameters incorrectly. On a second attempt, it trained for a

couple of hours and then produced decent results by recognizing the word “COBORG” almost every time

it is said. From there I built up the python script as a state machine to switch between a keyword

recognition mode and general recognition mode. The script sets up both modes as well as an enum list

containing the possible command outputs. It runs continuously to always listen for the trigger keyword

“COBORG” from the keyword dictionary, then once recognized, it switches the interpreting dictionary to

the standard dictionary so it can recognize every possible word for commands. The command

recognition is a switch statement (implemented as a series of if-elif statements in python) that looks for

certain command related keywords in the interpreted sentence and then transmits the recognized

command. For example, if the user says “COBORG” then “Move to home”, then the word “home” would

be recognized in that sentence and the “HOME” command will be transmitted.

 In testing, I noticed a pattern of people saying the commands right after the keyword in the

form of “COBORG Move to home”. This was causing issues because the script was including the “Move

to home” portion in the keyword recognition portion. To fix this, I implemented some audio feedback

into the voice recognition system. When the keyword “COBORG” is recognized, a pleasant jingle plays to

notify the user that the system is listening for a command. If a command is recognized, it plays a

separate success jingle. If no command is recognized, it plays a failure jingle. If an e-stop command is

recognized, it plays a slightly more urgent warning sound alerting the user that e-stop actions are being

taken.

4

Figure 1. Power Distribution Board PCB Schematic

Apart from work directly on the COBORG project, I handled the PCB assignment for our team.

With help from Yuqing and Jonathan, I designed the schematic given the parts list on the assignment.

From there I designed the PCB layout and generated the base CAD model. I decided to use the buck-

boost (switching) DC-DC regulators, as shown in Fig 1, because they are dramatically more efficient than

the linear regulators. For the ON/OFF enable inputs for the regulators, I decided to use DIP switches as

they are small in scale but still easily manipulated by hand. For overcurrent protection, I used fuses

rated to break at 150% the expected current at the input connector and the output of each regulator.

For the input that meant limiting the current to 15A, then 3A for the 12V regulator output, and 1.5A for

both the 5V and the 3.3V regulator outputs. For overvoltage protection, I used the given TVSs rated to

breakdown at greater than 10% over the desired voltage at the input and each of the regulator outputs.

The input required the SMAJ26A-E3/61 TVS rated to breakdown at 28.9V, ~20% overvoltage. The 12V

regulator output required the P4SMA16A TVS rated to breakdown at 15.2V, ~27% overvoltage. The 5V

regulator output required the SMAJ5.0 TVS rated to breakdown at 6.03V, ~21% overvoltage. The 3.3V

regulator output required the SMBJ3V3-E3/52 TVS rated to breakdown at 4.1V, ~24% overvoltage.

For the PCB layout, shown in Fig 2, I organized the components such that the parts related to

each regulator (DIP switch, LED, fuse, TVS, output connector) were in line with the corresponding

regulators. The input 24V connector is on the opposite side of the board as the regulator outputs. The

motor output connector is on this same side as that output is not regulated by any of the regulators.

5

Fig 2. Power Distribution Board PCB Layout

 Finally, for the CAD of the PCB, I found a pre-installed ULP in EagleCAD that exported a .brd file

as IDF files (.emn and .emp) to port into Solidworks’s circuit progam Circuitworks. The generated CAD

had the placement of all components but not much detail apart from that, as shown in Fig 3.

Fig 3. Power Distribution Board PCB CAD

6

2 Challenges
 The challenges that arose in redesigning the voice recognition system mostly centered around

trying to decrease keyword sensitivity and trying to increase command word sensitivity. In private

testing, the commands were able to be clearly recognized without wearing a mask. Unfortunately, this

will probably not be allowable conditions for the spring validation demonstration so tuning is necessary.

As for the keyword sensitivity, I reduced some of the probability for false positives without reducing the

probability for true positives by running the voice recognition system while my teammates were having

conversations in the lab space. Whenever they said a word that triggered as a false positive for

“COBORG”, I added the word to a list of words that the keyword dictionary should ignore. This showed

minor improvement to the oversensitivity while maintaining consistent positive responses to true

“COBORG” utterances. Additionally, I had some trouble pushing the voice recognition node to GitHub

because some of the NLP model files were too big to be added to the repository. I had to deep-dive into

what each file in the model did in order to figure out if these excessively large files were necessary.

Luckily, I discovered that they were event logs generated when I was training the NLP model so they

could be discarded without any cost to functionality. Another challenge we discovered is that the

microphone we got from the MRSD storage that we have been using for tests muffles the audio. This

could have been drastically impacting the recognition of words in both keyword and command modes

reducing the accuracy of both. We have since started looking for solutions in the form of directional

microphones designed to listen to just one user for the microphone that will actually be mounted onto

the COBORG.

 For the PCB assignment, the significant challenge was finding the EagleCAD library files for each

of the parts on the given list. Luckily, the team cooperated in scraping the internet for the .lbr files so I

could move on with developing the schematic.

7

3 Teamwork

Team
Member

Teamwork Progress Challenges Future Work

Feng
Xiang

• Created URDF model

• Integrated URDF with Move-It

• Got Robot Arm to Move to a
point selected in RVIZ

• Tying T265 camera to
URDF model

• Developing 3D goal
pose update to
stabilizer robot arm
relative to global
point

• Tying T265 camera to URDF
model and moving the human
on the RVIZ simulator

Jonathan
Lord-
Fonda

• Updated ROS Node Map with
Gains node

• Updated ROS Node Map for
vision system

• Added a speaker output to
ROS Node Map

• Wrote Main State Node

• Wrote up semantic
Goal_Setter Node

• Helped construct the robot
holder/testing structure

• Full-install Linux USB
is not Persistent
install Linux USB

• The Goal_Setter is
complex. We’re not
entirely sure how to
match up our
images/3d
points/transformatio
ns and average them

• Motion planning will
have to be fast and
we will also have to
adjust our waypoints
locally to account for
motion

• Connect main_state_machine
node to voice_recog node

• Semantically write out Gains
node

• Update/change ROS Node
Map as needed

• PCB CAD

• Work alongside Jason to
absorb all of his knowledge

• Plan out roadmap for
Actuated Manipulation with
Jason

• Complete at least one task for
Jason in Actuated
Manipulation

Gerry
D’Ascoli

• Redesigned voice recognition
system to work with “Coborg”
trigger word

• Wrote script to translate
verbal commands into robot
instructions

• Added audio feedback for
voice control system

• Helped construct COBORG
demo/testing structure

• Designed PCB schematic with
Yuqing & Jonathan

• Designed PCB layout .brd file

• Created CAD model of PCB

• Improving accuracy
of command
recognition

• Decreasing sensitivity
of “Coborg” trigger
word

• Developing ROS node
wrapper to transmit
interpreted commands to the
main ROS node (State
machine)

• Investigating new
microphone for better single
user recognition

8

Yuqing
Qin

• Installed Realsense D435i ROS
package

• Launched YOLO v3 on hand
detection

• Wrapped YOLO model with
ROS node

• Set up GPU to run the YOLO
ROS node

• Tested D435i with YOLO node

• Need to research on
ROS node design for
goal’s 3D position
(goal_setter)

• Need to fully
understand the
intrinsics , depth and
3D location.

• Finding corresponding part
location from hand position

• Abstracting depth
information from D435i

• Obtaining the real world 3D
position from depth

Husam
Wadi

• Cleaned up B512 with the
group

• Built structure to hold Coborg

• Adapted timeline to increased
workload

• Assisted Jason with intel
realsense (T265)

• Assisted Yuqing with intel
realsense (D435i)

• Assisted Jonathan with ROS
Node Map

• Ensured team used Github

• Discovering how to
send an absolute
point for the end
effector to track to.
How do we use /tf
topic to translate a
depth point from the
D435i, transform
through the T265, all
the way to the end
effector of the robot
arm.

• Deep dive testing with robot
arm and realsense cameras to
discover the link between
them.

4 Plans
 My plans for the next progress review are to have a full functioning ROS node for the voice

recognition system that can transmit recognized commands to the main state machine ROS node that

Jonathan is making. This will require making a custom publishing format as the standard format using

“rospy.spin()” will not work with the current format of the voice recognition node. This is due to the

voice recognition script running on an infinite while loop to continuously listen so “rospy.spin()” will hold

up that while loop and prevent listening. We will have to fold a publishing structure into the existing

command recognition switch statement.

 I also plan to find a new microphone for the voice recognition system that better fits our use

case. This solution should come in the form of a directional microphone that is easily mountable onto

the COBORG and can interpret the voice of the single user.

