
Carnegie Mellon University

16-681

MRSD Project 1

Individual Lab Report 1
COBORG

Team C:
Gerald D'Ascoli | Jonathan Lord-Fonda | Yuqing Qin | Husam Wadi

Feng Xiang

Sponsor:
Biorobotics Lab

February 25, 2021

Table of Contents

Individual Progress 1
Sensors & Motors Lab 1

GUI 1
COBORG Project 3

Challenges 3
Sensors & Motors 3
COBORG Project 4

Teamwork 4
Sensors and Motors Lab 4
COBORG Project 5

Plans 6
Sensors & Motors 6
COBORG Project 6

Quiz 6
ADXL335 6
Signal Conditioning 7
Control 8

Appendix 8
Arduino Code 8
GUI Launch Readme 10

1. Individual Progress
1.1. Sensors & Motors Lab

My responsibilities for the sensors and motors lab was to create the GUI, help
with sensor code integration, mount the hardware, and clean up the wiring after the initial
prototype was completed. The code integration was the process of taking all the
individual sensor components and combining them into one, and since the GUI was to
interface with the final integrated sensor code, I helped with the transition between sensor
and GUI integration. The hardware mounting was the process of affixing all the
components (primarily using thermal glue) to the breadboards. The wiring cleanup
consisted of removing each individual wire that was oversized and replacing with
smaller, compact wire to increase the reliability of the sensors and motors circuit.

1.1.1. GUI
We decided to do the GUI in RVIZ/RQT, as this would allow the sensors

and motor lab to relate to our MRSD project. While I am very familiar with
Processing, and could have created a GUI within a matter of hours in a single day
through Processing, we felt as a team that learning ROS through this lab was
something that was worth investing time into. This meant that we had to learn
how to incorporate a ROS publisher and subscriber in Arduino, in parallel to the
sensor control that already existed. I would estimate that creating the GUI in ROS
took well over 40 hours to complete, as there were many components that had to
be completed for the GUI to work and display correctly:

1. A URDF had to be created to output joint states that would
command the motors.

2. A subscriber on the Arduino side had to translate the joint states
from radians to the motor’s respective input (degrees, pwm, steps).

3. An RVIZ custom configuration to show the URDF
4. The joint states GUI node to generate sliders for the motor control

output.
5. A custom RQT layout that displays all 5 states + incorporates the

custom RVIZ perspective.
6. A custom message class (named “CMU.msg”) to display the

names of each output received on
7. A publisher node that publishes to “CMU.msg” the states of the

sensors and push button

The appendix contains the Arduino code that I wrote, and also the readme I created to launch the
“cmu_motor_lab” package I created for this lab. The final result is the GUI shown in the figure
below:

1

1.1.2. Final Product
In the figure below is the final sensors and motor lab circuit. We had to

adjust to an Arduino Mega from an Arduino Uno as our code took too much
memory in the Arduino and it became unreliable. While we looked for ways to
optimize our code, we thought that it would be safer to upgrade to an Arduino
Mega and use 7% of the total memory instead of 98% of the Arduino Uno’s
memory. The final project consisted of a flexible resistor (flex sensor) and
potentiometer which controlled the output of the servo motor, an ultrasonic sensor
which controlled the output of the stepper motor, and an IR sensor which
controlled the output of the DC motor, and a push button which would switch
from sensor control to GUI control. The potentiometer controlled the absolute
position of the servo encoder (from 0 - 180 degrees), while the flex sensor would
modify the angle from the potentiometer's position (±90 degrees from the current
servo position). The ultrasonic sensor would translate 0-100cm into a full
revolution of the stepper motor (which was split into the 400 steps per revolution
of the stepper). The DC motor was PID controlled based on a desired position
generated from the IR sensor translated to an encoder value that the DC motor
encoder would feedback to match. The figure below shows the final product as
described:

2

1.2. COBORG Project
As the project manager for the COBORG project, I focus on ensuring that

the timeline we promised in the previous semester is met, and that we can adapt as
a team when changes arise. We use an Agile framework through Trello to plot one
week intervals of work, and every week we review what was accomplished and
what was not. By balancing our project workload with our coursework, we have
been able to stay on track for the semester.

Outside of project management, I focus with Jonathan on the ROS
software architecture of the COBORG platform. Recently I have been researching
state managers that may be applied to our system, and we plan on running a pilot
test in the upcoming week to see if the addition of a dedicated state manager,
named smach, is worth integrating into our project. This package was
recommended to us by a ROS mentor and expert who advises the project.

2. Challenges
2.1. Sensors & Motors

There were many challenges in setting up the GUI for the sensors and
motors lab. The learning curve to implement “rosserial” to communicate with the
Arduino was steep, and specifically creating a custom message type called
“CMU” which contained data types of “Potentiometer, Flex_Sensor, IR_Sensor,
Ultrasonic_Sensor, and Button_State” was a much greater challenge than I

3

anticipated. Troubleshooting the message took more than a day for it to operate in
the manner that I had anticipated. Also I found RQT to be buggy, as I spent a
considerable amount of time working through the program crashes due to
matplotlib issues.

2.2. COBORG Project
As a project manager, the last thing I would like to see is feature creep this

semester. The original scope of the project was created with two to three weeks of
buffer that already seem to be dwindling as we progress through the semester. We
did not anticipate that the MRSD Project 1 course would have as many long and
strenuous assignments as it currently has, and this could lead to a considerable
amount of stress with MRSD project scope as is. Increasing the scope in any way
would present a considerable challenge to the project, as between this course,
robot autonomy, the business course, and for my teammates “introduction to
machine learning”, we are overcapacity in terms of working hours per week.
Ensuring that our timeline does not slip any further is my greatest challenge.

3. Teamwork
3.1. Sensors and Motors Lab

Team Member Sensor Motor Motor Lab Contribution

Feng Xiang Potentiometer Servo motor Mapped potentiometer sensor analog output to
servo-motor input. Collaborated with Yuqing to
develop a control relationship between
potentiometer and flex sensor with servo motor
output. Helped combine code together to get
arduino-only arduino code state.

Jonathan Lord-Fonda Ultrasonic Stepper motor -Soldered DC motor controller board
-Wrote switch debouncer code
-Wrote code structure
-Wrote program for stepper motor
-Wrote program for ultrasonic sensor

Gerry D’Ascoli IR DC motor -Wired DC motor and motor controller to each
other and arduino
-Debugged electrical issues
-Wrote PID control of DC motor using encoder for
state and IR sensor as input for desired state
-Wrote program to control stepper motor position
using the ultrasonic sensor as input.

Yuqing Qin Flex sensor Servo motor Mapped a flex sensor output to the servo motor to

4

control its movement. Also tested the IR sensor
and implemented moving average filtering to
improve the sensor outputs.

Husam Wadi GUI -Created a ROS publisher and subscriber node in
Arduino to send/receive data
-Created a serial interface between ROS and the
Arduino using “rosserial”
-Created a custom message class “CMU” that
handled sensor data outputs
-Created a URDF that controlled the motor outputs
through joint_states publisher
-Created a visualization in RVIZ to show the GUI
motor control output
-Created a RQT GUI that contained RVIZ and 5
plots that displayed all the sensor outputs in real
time

3.2. COBORG Project

Team Member Work Description for COBORG

Feng Xiang Developed pipeline between MoveIt and HEBI API and Coborg motors
Developed URDF and initialized moveit to move robot in RViz

Jonathan Lord-Fonda -Wrote the initial BOM for the current system
-Created initial ROS node map
-Sketched out main state node
-Installed Linux/ROS and completed ROS training
-Tested the arm’s max lift at full extension
-Reviewed Jason’s 3-D model of Coborg

Gerry D’Ascoli Developed prototype of voice system. Generated a custom implementation of
pocketsphinx on the CoBorg system and created custom libraries and recognition files
to tailor the voice system to the CoBorg’s specific requirements and functions.

Yuqing Qin Work on perception subsystem. Implement YOLO ROS node and integrated with
realsense camera node

Husam Wadi -Manage and updating project timeline to adapt to the semester load
-Used scrum/agile methodologies through kanban boards to map out weekly project
work
-Deepened ROS interconnectivity knowledge by researching state machines in ROS and
going through ROS tutorial examples.

5

4. Plans
4.1. Sensors & Motors

We plan on using the knowledge we gained from doing the GUI in ROS
for our project. There were many fundamental aspects of ROS that were cemented
by doing the sensors and motors lab GUI. The use of the joint_states and
robot_states publishers will come handy for our robot arm execution in the future.

4.2. COBORG Project
In the next few weeks I will focus on encouraging the team to meet a mid

March pre demo date, where we will try to go through a limited run of the SVD.
This process will allow us to see clearly which aspects of the project need to be
focused on and improved. I will also continue providing support across the board
for the COBORG team, as my experiences lend well to almost every aspect of the
project. Specifically, we have challenges integrating the Intel Realsense cameras
with the hebi robot arm in ROS, so we will be doing pilot runs and rapidly iterate
and test cross functions between the cameras and the arms using Move-It.

5. Quiz
5.1. ADXL335

● What is the sensor’s range?
○ ±3g (minimum used)

● What is the sensor’s dynamic range?
○ 6g (dynamic based on minimum)

● What is the purpose of the capacitor CDC on the LHS of the functional block
diagram on p. 1? How does it achieve this?

○ The capacitor decouples the accelerometer from noise on the power
supply. It does this by carrying a capacitance that provides enough power
to keep the accelerometer stable if the voltage drops temporarily, and if the
voltage increases the capacitor will be able to absorb the excess energy.

● Write an equation for the sensor’s transfer function.
○ 1. 5𝑉 + (300𝑚𝑉/𝑔) * 𝑎

● What is the largest expected nonlinearity error in g?
○ Based on typical (3.6g) = ±0.0108g

● How much noise do you expect in the X- and Y-axis sensor signals when the
sensor is excited at 25 Hz?

○ 𝑟𝑚𝑠 𝑁𝑜𝑖𝑠𝑒 = 𝑁𝑜𝑖𝑠𝑒 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 * (𝐵𝑊 𝑥 1. 6) = 150 * (25 𝑥 1. 6) = 948. 68𝑢𝑔
● How about at 0 Hz? If you can’t get this from the datasheet, how would you

determine it experimentally?

6

○ We would get as close as we could to 0 Hz and give it a test. Let’s say that
0.01 Hz is close enough:

○ ~𝑟𝑚𝑠 𝑁𝑜𝑖𝑠𝑒 = 150 * (0. 01 𝑥 1. 6) = 18. 97𝑢𝑔

5.2. Signal Conditioning
● Filtering

○ Name at least two problems you might have in using a moving average
filter.

■ If the moving average filter is large, there will be a lag between the
latest value and the average value.

■ The moving average smooths the output of the sensor, causing it to
lose granularity/sensitivity.

○ Name at least two problems you might have in using a median filter.
■ You usually have to add padding to the filter to accommodate the

boundaries of the median filter. This in itself is noise.
■ A median filter is a nonlinear filter. This means that it is still

possible to see large spikes in the data that a moving average
would have prevented. Depending on the application this could be
an advantage, but in many proximity sensor applications this is a
disadvantage.

● Op Amps
○ Your uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a

0V output and 1.0V should give a 5V output).
■ For this system V2 = Input, and V1 = Reference. We have 2

systems of equations:
● 5𝑣 = (1. 0𝑣 − 𝑉1)(𝑅𝑓/𝑅𝑖) + 1. 0𝑣
● 0𝑣 = (− 1. 5𝑣 − 𝑉1)(𝑅𝑓/𝑅𝑖) − 1. 5𝑣

■ Solving for this system we find:
● 𝑉1 = − 3𝑣
● 𝑅𝑓/𝑅𝑖 = 1

○ Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a
0V output and 2.5V should give a 5V output).

■ This circuit has no solution. When I tried to solve for the system
of equation, using V1 as an input I got a negative value. I𝑅𝑓/𝑅𝑖
tried the other way (V2 as input) and found it was the same result.
It seems that if the dynamic range is equal to the output range there
is no combination of resistors that will give that value.

7

5.3. Control
● If you want to control a DC motor to go to a desired position, describe how to

form a digital input for each of the PID (Proportional, Integral, Derivative) terms.
○ For Proportional a motor encoder outputs a positional output so we can

directly feed the current encoder output minus the desired output to
generate a proportional error.

○ The Integral control input can be created by summing the error of the
desired positional encoder position minus the current encoder position
multiplied by the timestep.

○ The Derivative control input could be derived from the positional encoder
by taking the previous position minus the current position divided by the
timestep, but this will also derive the noise causing a somewhat unreliable
output. Another method would be to use a dedicated velocity sensor, such
as MEMS gyroscope or a hall effect based sensor.

● If the system you want to control is sluggish, which PID term(s) will you use and
why?

○ Proportional. By just adding a proportional gain we can decrease the rise
time and increase the responsiveness of the system.

● After applying the control in the previous question, if the system still has
significant steady-state error, which PID term(s) will you use and why?

○ We would add an Integral term to the equation. This will allow us to get a
running sum of the steady state error and compensate for it, thus allowing
us to reach our desired goal.

● After applying the control in the previous question, if the system still has
overshoot, which PID term(s) will you apply and why?

○ The Derivative term will allow us to derive the future error, thus removing
the overshoot caused by cranking up the proportional gain. Our system
will now “anticipate” the overshoot and correct before it happens.

6. Appendix
6.1. Arduino Code

// ROS Headers

#include <Arduino.h>

#include <ros.h>

#include <sensor_msgs/JointState.h>

#include <rosserial_arduino/CMU.h>

// ROS declarations

// Message callback declaration

void messageCb(const sensor_msgs::JointState& msg) { //don't move this function. doesn't work if moved

under void loop().

8

if (state == 1){ //only run this code in GUI state (1)

//servo msg

int set_angle = msg.position[0]*(180/3.14); //servo motor convert rad2deg (pi -> 180 deg rotation)

servo.write(set_angle); // valid inputs: 0-180

//dc motor msg

int set_pwm = msg.position[1]*(255/1.57); //dc motor range is from pi/2 to -pi/2. each side denotes

max PWM speed (255) in that direction

if(set_pwm > 0){//CounterClockwise

digitalWrite(motorpin1,HIGH);

digitalWrite(motorpin2,LOW);

analogWrite(enable_motor, set_pwm);

}

else if(set_pwm < 0){//Clockwise

digitalWrite(motorpin1,LOW);

digitalWrite(motorpin2,HIGH);

analogWrite(enable_motor, -set_pwm); //only positive PWM values. --set_pwm = +set_pwm

}

//stepper message

int set_step = msg.position[2]*(stepsPerRevolution/6.28); //convert rad2steps (2 pi = 360 deg

rotation)

if(set_step > currentStep) digitalWrite(dirPin,HIGH);

else digitalWrite(dirPin,LOW);

for(int x = 0; x < abs(set_step-currentStep); x++){

digitalWrite(stepPin, HIGH);

delayMicroseconds(1000);

digitalWrite(stepPin, LOW);

delayMicroseconds(1000);

}

currentStep = set_step; //ensure no discrepancy

}

}

// ROS node type(s) declaration

ros::NodeHandle nh; //create a NodeHandle called nh

ros::Subscriber<sensor_msgs::JointState> sub("joint_states", messageCb); //subscribe to joint_states

rosserial_arduino::CMU cmu_msg; //define CMU message type

ros::Publisher pub("CMU", &cmu_msg); //create a publisher to cmu_message of type CMU

void setup(){

//ROS Setup

nh.initNode();

nh.subscribe(sub);

nh.advertise(pub);

}

void loop(){

//package sensor date to cmu_msg

cmu_msg.Potentiometer = anglePot;

cmu_msg.Flex_Sensor = angleFlex;

cmu_msg.IR_Sensor = dist;

cmu_msg.Ultrasonic_Sensor = distanceCm;

cmu_msg.Button_State = state;

pub.publish(&cmu_msg); //send it!

nh.spinOnce(); //check for ROS callbacks for joint_states movement

}

9

6.2. GUI Launch Readme

10

11

