
Carnegie Mellon University

16-681

MRSD Project I

Task 4 Sensors and Motor Control
Individual Lab Report 1
Team C - COBORG

Jonathan Lord-Fonda
Teammates: Husam Wadi, Feng Xiang, Yuqing Qin, Gerry D’ascoli

February 25, 2020

Table of Contents

Individual Progress 1
Sensors & Motors Lab 1
MRSD Project 2

Challenges 5
Sensors & Motors Lab 5
MRSD Project 6

Teamwork 6
Sensors & Motors Lab 6
MRSD Project 7

Plans 7
Sensors & Motors Lab 7
MRSD Project 8

Appendices 8
Appendix 1 - Button Debounce Code 8
Appendix 2 - Ultrasonic Sensor Code 8
Appendix 3 - Stepper Motor Code 9
Appendix 4 - Semantic First Draft of Main_State_Machine Node 9

1. Individual Progress
1.1. Sensors & Motors Lab

My responsibilities for this project included soldering the DC motor controller
board, developing code for the stepper motor, the ultrasonic sensor, and the
push button with debouncer, and also creating the software framework for the
project as a whole and integrating most of the code.

Figure 1 demonstrates the structure of our Arduino code. As our team began
to understand how to pull information from the sensors and operate the
motors, it was important to lay out the framework for how they would all mesh
together. Establishing a consistent understanding of which sensors would
relate to which motors and how the push button would control everything
allowed individual teammates to complete their tasks separately and then
combine their sections with few issues. In addition to this I created the first
integrated code structure, labelling sections for each sensor and motor and

establishing the overarching if statement that would control the output to the
motors.

Figure 1 - Arduino Code Structure

The above figure demonstrates the movement of information through the code. The sensors
generate information and send them both to their respective motors and the GUI controls. The
GUI displays the information from the sensors and also generates motor commands for each
of the motors based on user input. The push button controls which information the motors use
to operate.

The push button is a simple sensor that sends a high signal when pressed and
a low signal the rest of the time. I attached the push button pin to an interrupt
that checked for its rising. Within the interrupt the program checks to see if
enough time has passed since the previous state change and, if so, changes
the state and sets the time of the previous press to the current time. If
sufficient time has not passed since the last change nothing happens and the
interrupt is exited. Including this check in the interrupt prevents switch
bouncing from changing the state multiple times. Code for this section can be
found in Appendix 1.

The ultrasonic sensor measures distance by sending a high signal to the
trigger pin for 10 microseconds and then reads the response as a digital pulse
from the echo pin. The distance measured by the ultrasonic sensor is
represented by the length of time that the echo pin maintains a high signal.
The distance in centimeters is given by multiplying the measured time by
0.034 (due to the speed of sound) and dividing it by 2 (due to travel time both
to and from the object). After receiving a measurement from the ultrasonic
sensor, the datum is sent through an averaging filter that stores the most
recent ten recorded measurements and returns their average. Using the

1

average result acts as a low-pass filter, helping to remove noise from the
sensor. Upon receiving the filtered result, upper and lower bounds are applied
to ensure that we stay within the usable range. Code for this section can be
found in Appendix 2.

After receiving the ultrasonic sensor reading, and assuming that the Arduino is
in state “0” (reading signals from the sensors and not the GUI), commands are
given to the stepper motor to rotate to the measured position. The range of
the ultrasonic sensor (from 0 to 100 cm) are mapped to the positions of the
stepper motor and stored as the desired position. If the desired position is
larger than the current position of the stepper motor (which is initialized at 0),
then the direction pin is set to high, otherwise it is set to low. After the
direction of the stepper motor is determined the motor takes steps until the
desired position is reached. Steps are taken by using a for loop to alternate
between high and low signals sent to the step pin, with 1000 microsecond
delays between each. Once the desired position is reached, the current
position is updated to it. Code for this section can be found in Appendix 3.

1.2. MRSD Project
Since the CODR report, my responsibilities for the COBORG project have
included creating a Bill of Materials (BoM) for the system as is, creating an
initial ROS node map for the system, sketching out the main state node for the
system, and testing the arm’s max lift force at full extension.

For the BoM, I listed each individual component currently a part of the
COBORG system and grouped them together in sensible clusters of larger
constructs. For now I did not include the internal electrical components due to
a lack of detail on our team’s current circuit diagram.

In order to test the arm’s max lift force at full extension I went to the lab with
my teammates and we booted up the system and extended the arm straight
out. Once the arm was fully extended I pushed on the end of the arm until it
began to move and noted the highest back-torque displayed by the motors in
the HEBI interface. The highest torque listed was 4.36 Nm which, given an
arm length of 28 inches, leads to ~3 lbs. of max lift force generated by the
motors. This was an important statistic to test early because it aligns directly
with our requirement that the arm will be able to lift at least 2 lbs. at full
extension. A failure to meet this requirement would require an immediate
response from the team.

Similar to my work creating a code structure for the Sensors and Motors Lab, I
realized that we would need to create a ROS node map so that the team
understood what functionality was required, what information was available,

2

and how each of these would interact with one another. I spent some time
thinking through the steps the COBORG would have to take to accomplish its
functions and wrote out a flow chart describing the different nodes and how
they would interact with one another. Figure 2 contains the semantic
description of how the system will work. Color coding highlights the paths
followed by unique commands. Creating the diagram also helped highlight the
difficult parts of the system that will require the most work from the team,
namely the Goal_Setter, Localizer, and Move_It (Note that the Octomap node
and collision avoidance is currently scheduled to be implemented in the fall,
but a full plan was created so as to accommodate future integration). A full
description of how the code will function is included in Figure 2’s caption.
Figure 3 contains the topic description of how the system will work. The
names of the topics listed may change or be reorganized, but it is imperative to
have a standard that the team can reference when writing code for their
individual nodes. Having a centralized plan allows individuals to publish and
subscribe to topics in their nodes and bring them together seamlessly into the
final system. Buried in these two figures are some decisions made through
team discussion, such as to treat the relationship with YOLO as a
publisher/subscriber relationship instead of a service. Treating YOLO as a
service would make more sense with the code logically, since we only need it
to analyze a few images, and then continue on with the program, but YOLO as
written is a complex node that runs on a publisher/subscriber relationship.
Since the YOLO node was already working we decided not to try to change it
so that it could be easily utilized by our code. The downside is that we will
have to ensure that the correct number of messages is always sent to YOLO
and if another function needs to use YOLO we will have to create a second
node or at least separate topics to accommodate the function without polluting
the initial function.

Figure 2 - ROS Node Map, Semantic

3

The above figure represents the flow of information through our ROS system. Audio
information first comes in through the microphone and is analyzed by the Pocket_Sphinx
node, which sends voice commands to the Main_State_Machine node. The
Main_State_Machine node determines whether to enact or ignore the commands based on
whether the previous command was finished. An emergency shut off command will go directly
to the motors, turning them off. A compact command will tell the Goal_Updater to set a
pre-defined, relative goal for the arm. The most complex command, hold, is sent to the
Localizer. The Localizer takes input in the form of RGB images and point-cloud data from the
Intel D435i camera and local position data from the Intel T265’s integrated visual SLAM.
Combining this information together the Localizer node constantly publishes the current pose
of the COBORG backpack in the world frame to the Goal_Updater and, when initially
commanded by the Main_State_Machine, sends a fresh set of images, 3-d points, and local
pose data to the Goal_Setter node. The Goal_Setter sends the images to YOLO, which
analyzes them for human hands and returns the bounding boxes. The Goal_Setter integrates
the 3-d point cloud, pose data, and bounding box from YOLO each image to determine where
the hands are in the world frame and where the robot’s goal should be in the world frame. The
various goals are analyzed, checking for union and intersection, to throw out outliers and
determine the true goal in the world frame. Goal_Setter sends the new goal for the command
to Goal_Updater which, using the relative pose data from Localizer, creates a homography to
transform the global goal to a local goal for the robot. Upon receiving the goal from
Goal_Setter it continues publishing the updated local goal constantly until sent a new
command from Main_State_Machine or receiving a new goal from Goal_Setter. The Move_It
node receives the local goal from Goal_Setter and plans a path for the COBORG arm to that
goal using the current motor position data from Motor_Controls and obstacle information from
Octomap. As soon as it finishes and publishes a path, it begins generating a new one with the
most recent data. A fast Move_It node will be required to ensure that we can account for
movements of the robot. Upon securely reaching the intended goal Move_It will let
Main_State_Machine know that the COBORG is ready for its next task. The Motor_Controls
node will most likely use impedance control to constantly publish directions to the motors to

4

follow the most recent path it has received from Move_It. It will also publish the current motor
state to Move_It, for the reasons described above, and to Main_State_Machine, so that if the
motors violate the safety bounding box of the human “trunk” the Main_State_Machine can
immediately shut down the Coborg, preventing user injury.

Figure 3 - ROS Node Map, Topics

The above figure lists the topic names to be published and subscribed to by each of the
nodes. It also establishes the type of relationship that each of the nodes will have, currently
entirely publisher/subscriber relationships.

In addition to the activities listed above, I also sketched out a first-draft,
semantic description of how I expect the Main_State_Machine node will
function. The draft can be found in Appendix 4.

2. Challenges
2.1. Sensors & Motors Lab

One of the difficulties that I encountered was in soldering the DC motor
controller board. I have some moderate experience with soldering, but I
certainly got better over the course of soldering the board. When it came time
to solder the L298 chip, with all of its closely-seated pins, I ended up
connecting a number of them with solder. After a fruitless half hour of trying to
remove the solder I turned to Husam for help and with his experience, he was

5

able to remove the solder that I couldn’t. Sometimes an expedient solution is
important to remove barriers to progress.

Another difficulty that I faced in setting up the code structure was how to allow
all of the sensors and motors to operate simultaneously without delaying the
other sensors and motors. To this end we tried to remove loops from most of
the code to prevent delays and hang-ups. Additionally, I changed the encoder
interrupts to be detached while the board was receiving instructions from the
ROS GUI to prevent any interruption of function on the ROS side of things.

2.2. MRSD Project
The biggest challenge that I faced for the COBORG was deciding how to
integrate the YOLO, Localizer, and Goal_Setter functionality. The major
concern was that we needed to keep the 3-d point cloud and pose data
alongside the RGB images, but YOLO only accepts RGB images. Additionally,
we needed Localizer to tie all of the information together, but it also needed to
run quickly, fast enough to keep up with the T265’s publishing of local position.
I went through a few iterations before landing on a solution that I believe will
retain the data that we need, while also allowing a continuous flow of local
states in the world frame. I still have some doubts about how to integrate
Move_It into the map as a whole and whether the Main_State_Machine should
be doing more or have increased functionality.

3. Teamwork
3.1. Sensors & Motors Lab

When I ran into problems with the DC motor control board Husam and Gerry
helped fix my soldering job and gave me tips about how to solder more
effectively. After it was assembled, Gerry, Husam, and I tested the board to
make sure that it worked correctly.

Gerry and I discussed how to implement code for the DC motor encoder to
track the motor’s position, even while the loop was continuously running. We
also discussed how to implement the PID control.

Early on I established the structure of the code, as well as a map displaying its
functionality. This helped all team members understand where and how to
integrate their sections. It was particularly helpful for Husam so that he knew
how he should connect ROS to the rest of the Arduino code.

6

3.2. MRSD Project
In order to test the arm’s max lift force, Jason and Husam helped me boot up
the robot, move it into position, and use HEBI’s GUI to read out the
back-driven torques on the motors.

Yuqing helped me install Linux and ROS on my personal flash drive, despite
running into many, many problems and having to reformat my flash drive ~6
times.

I discussed my plans for the node map, particularly the vision system, with
Yuqing and Husam. My initial idea was to treat YOLO as a client, but
concerns from Yuqing over re-writing the node convinced me to change it to
the publisher/subscriber relationship that it currently has. Our conversation
also led to a new understanding and restructuring of the Localizer,
Goal_Setter, and YOLO node structure. I discussed my plans for the node
map, particularly the path planning and control system with Jason. He
explained the functionality of Move_It and Octomap and we came to the
conclusion that we agreed on how the path planning nodes should be set up. I
discussed my plans for the node map, particularly the voice system, with
Gerry. We agreed on the implementation and he explained that only a small
tweak would be required for it to function as envisioned. Discussing with the
team was key for the node map because it is the plan that we all need to follow
if we intend to bring the system together as a whole. Additionally, leaning on
the expertise of my teammates ensured that I didn’t push forward with an idea
that ended up proving faulty.

Jason created a 3-d model of our current COBORG system and asked me to
check it over. I reviewed it, said it looked great, but also brought up the
concern of the assembly being static. Since I knew that we intended to use
the CAD model to export to the URDF, I wasn’t sure if this was a concern or
not. Bringing up issues now, before they’re a problem, is key.

4. Plans
4.1. Sensors & Motors Lab

The Sensors & Motors Lab shares little relevance to our project, so we
currently have no plans to further build on its development. This is largely due
to the fact that we’re using HEBI motors, which provide a simple, robust
interface and that our main sensor is a camera with 3-d point cloud data, which
was not a part of the Sensors & Motors Lab project.

7

4.2. MRSD Project
One of my future tasks for the COBORG project is updating the BoM with
more details, as well as the electrical components excluded on the first pass.
Additionally I intend to fully write out a functioning Main_State_Machine node
and integrate it with Gerry’s Pocket_Sphinx node. I would also like to learn
more about Move It and Octomap with Jason and sketch out some rough
details for those nodes.

5. Appendices
5.1. Appendix 1 - Button Debounce Code

// Function to debounce switch and change state
void State_Change() {

if ((millis() - B0Press) > debounceDelay) { // Check to see when button was
last pressed

state += 1; // If Button 0 is pushed, increment the state
if (state == 2){
state = 0; // If currently state 1, cycle back to state 0
B0Press = millis(); // Grab the time at which the button was pressed

}

}
}

5.2. Appendix 2 - Ultrasonic Sensor Code
// Ultrasonic Sensor
digitalWrite(triggerPin, LOW);
delayMicroseconds(2);
digitalWrite(triggerPin, HIGH);
delayMicroseconds(10); // Hold trigger for 10 microseconds, which is signal

for sensor to measure distance.
digitalWrite(triggerPin, LOW);
unsigned long durationMicroSec = pulseIn(echoPin, HIGH);
int avgDurationMicroSec = avgFilterUltra((int) durationMicroSec);

double distanceCm = avgDurationMicroSec / 2.0 * 0.0340; // 340m/s
0.0340cm/microsec

if(distanceCm > 100.0){//bounds check
distanceCm = 100.0;

}
if(distanceCm < 0){

distanceCm = 0;
}

8

5.3. Appendix 3 - Stepper Motor Code
// Update Stepper Motor
desiredStep = round(map(distanceCm, 0, 100, 0, stepsPerRevolution));
if(desiredStep > currentStep) digitalWrite(dirPin,HIGH);
else digitalWrite(dirPin,LOW);
for(int x = 0; x < abs(desiredStep-currentStep); x++){

digitalWrite(stepPin, HIGH);
delayMicroseconds(1000);
digitalWrite(stepPin, LOW);
delayMicroseconds(1000);

}
currentStep = desiredStep;

5.4. Appendix 4 - Semantic First Draft of Main_State_Machine Node
Main_State_Machine Intuitive Draft

// States:
// hold > Move to and hold plate
// compact > Return to home position
// e_stop > Shut off power to motors

On launch{
state = compact
Begin subscribing to /voice_commands
Begin subscribing to /pos_current
Begin subscribing to /goal_status
Start publish to /hold_init
Start publish to /compact_init
Start publish to /e_stop
goal_status = 0
Send command to /compact_init

}

On publish in /voice_commands{
if voice_command == e_stop{

state = e_stop
send stop command to /e_stop

}
if voice_command == hold{

if goal_status == 1{
state = hold
send initialization command to /hold_init

}
}
if voice_command == compact{

if goal_status == 1{
state = compact
send initialization command to /compact_init

}

9

}
}

if pos_current interferes with "human core" restriction{
state = e_stop
send stop command to /e_stop

}

Loop

6. Sensors & Motor Control Quiz
1) Reading a datasheet.

a) What is the sensor’s range?
+/-3.6 g

b) What is the sensor’s dynamic range?
7.2 g

c) What is the purpose of the capacitor on the LHS of the𝐶
𝐷𝐶

functional block diagram on p.1? How does it achieve this?
The capacitor maintains the voltage source at 3V, removing dips
and noise. If the voltage source dips below 3V, the capacitor will
act like a small battery, outputting power to the circuit to make up
the difference. This will only function at high frequencies.

d) Write an equation for the sensor’s transfer function.
V is the output voltage in Volts and x, y, and z acc are the
measured accelerations in g’s.
𝑥
𝑎𝑐𝑐

= (𝑉 − 1. 5)/0. 3
𝑦
𝑎𝑐𝑐

= (𝑉 − 1. 5)/0. 3
𝑧
𝑎𝑐𝑐

= (𝑉 − 1. 5)/0. 3

𝑇𝑜𝑡𝑎𝑙
𝑎𝑐𝑐

= (𝑥
𝑎𝑐𝑐

2 + 𝑦
𝑎𝑐𝑐

2 + 𝑧
𝑎𝑐𝑐

2)0.5

e) What is the largest expected nonlinearity error in g?
3. 6𝑉/0. 3𝑚𝑉/𝑔 * 0. 003 = 0. 036𝑔

f) How much noise do you expect in the X- and Y-axis sensor signals
when the sensor is excited at 25 Hz?
150/(25)0.5 = 30𝑢𝑔

g) How about at 0 Hz? If you can’t get this from the datasheet, how
would you determine it experimentally?
This is not possible to determine from the data sheet, because it
suggests an answer of infinite noise. I would test this by setting the
accelerometer on a motion-cancelling platform and reading the
sensor’s output, recording it as the error.

2) Signal conditioning
a) Filtering

10

i) Name at least two problems you might have in using a
moving average filter.
A moving average filter with a large window size could result
in significant lag. A moving average filter is also prone to be
thrown off balance by individual errors (such as the
occasional 0 or huge number) thrown by the sensor.

ii) Name at least two problems you might have in using a
median filter.
A median filter with a large window size could result in
significant lag, preventing the device in question from
reacting quickly or even moving at high rates of change at
all. A median filter also entails a significant computing cost.

b) Opamps
i) In the following questions, you want to calibrate a linear

sensor using the circuit in Fig. 1 so that its output range is 0
to 5V. Identify in each case: 1) which of V1 and V2 will be
the input voltage and which the reference voltage; 2) the
values of Rf/Ri and the reference voltage. If the calibration
can’t be done with this circuit, explain why.

(1) Your uncalibrated sensor has a range of -1.5 to 1.0V
(-1.5V should give a 0V output and 1.0V should give a
5V output).
𝑉
𝑜𝑢𝑡

= (𝑉
2
− 𝑉

1
)𝑅

𝑓
/𝑅

𝑖
+ 𝑉

2
0 = (− 1. 5 − 𝑉

1
)𝑅

𝑓
/𝑅

𝑖
− 1. 5

− 1. 5𝑅
𝑖
/𝑅

𝑓
− 1. 5 = 𝑉

1
5 = (1 − 𝑉

1
)𝑅

𝑓
/𝑅

𝑖
+ 1

5 = (1 − (− 1. 5𝑅
𝑖
/𝑅

𝑓
− 1. 5))𝑅

𝑓
/𝑅

𝑖
+ 1

4 = (1 + 1. 5))𝑅
𝑓
/𝑅

𝑖
+ 1. 5

2. 5 = (2. 5))𝑅
𝑓
/𝑅

𝑖
𝑅
𝑓
/𝑅

𝑖
= 1

5 = (1 − 𝑉
1
)1 + 1

𝑉
1
=− 3

V2 will be the input voltage, V1 will be the reference
voltage at 3V, and Rf/Ri will be 1.

(2) Your uncalibrated sensor has a range of -2.5 to 2.5V
(-2.5V should give a 0V output and 2.5V should give a
5V output).
𝑉
𝑜𝑢𝑡

= (𝑉
2
− 𝑉

1
)𝑅

𝑓
/𝑅

𝑖
+ 𝑉

2
0 = (𝑉

2
+ 2. 5)𝑅

𝑓
/𝑅

𝑖
− 𝑉

2
𝑉
2
= (𝑉

2
+ 2. 5)𝑅

𝑓
/𝑅

𝑖
𝑉
2
/(𝑉

2
+ 2. 5) = 𝑅

𝑓
/𝑅

𝑖

11

5 = (𝑉
2
− 2. 5)𝑅

𝑓
/𝑅

𝑖
+ 𝑉

2
5 = (𝑉

2
− 2. 5)𝑉

2
/(𝑉

2
+ 2. 5) + 𝑉

2

5 = (𝑉
2
2 − 2. 5𝑉

2
)/(𝑉

2
+ 2. 5) + 𝑉

2
𝑉
2
≈ 4. 04𝑉

0 = (4. 04 + 2. 5)𝑅
𝑓
/𝑅

𝑖
− 4. 04

4. 04 = (6. 54)𝑅
𝑓
/𝑅

𝑖
𝑅
𝑓
/𝑅

𝑖
≈ 0. 6177

V1 will be the input voltage, V2 will be the reference
voltage at roughly 4.04V, and Rf/Ri will be roughly
0.6177.

3) Control
a) If you want to control a DC motor to go to a desired position,

describe how to form a digital input for each of the PID
(proportional, integral, Derivative) terms.
A motor encoder should be used to keep track of the position.
Once the motor has been set to “home” the position can be set to 0.
As the motor turns, the encoder outputs will change. Comparing
the new output to the old output will show which direction the motor
has turned. Every time the motor encoder output changes,
increment or decrement the motor’s position by 1. Dividing this
tracked position by the number of encoder states in a given
revolution will tell you how many revolutions the motor has
undergone and which direction (based on sign). In order to get
velocity, record the amount of time between each change in the
encoder’s signal. One divided by the number of encoder states per
revolution divided by the number of seconds since the last encoder
state change, will give the angular velocity of the motor in
revolutions per second. In order to get an integral term describing
the motor’s error, record the error between the motor’s current
position and its desired position and multiply this by a short
timestep. Add this number to a record of the integrated error and
repeat for every timestep.

b) If the system you want to control is sluggish, which PID term(s) will
you use and why?
I would use proportional control because it would generate outputs
to close the gap between the motor’s current and desired position,
speeding it to its goal.

c) After applying the control in the previous question, if the system still
has significant steady-state error, which PID term(s) will you use
and why?

12

I would use integral control because it would generate outputs to
correct accumulated errors, nudging the motor to its goal if it has an
error built up over a long period of time.

d) After applying the control in the previous question, if the system still
has overshoot, which PID term(s) will you apply and why?
I would use derivative control because it would generate outputs to
counteract the speed of the motor (if the desired speed is 0),
slowing it down so that as it approaches the goal, and proportional
control outputs reduce to 0, the derivative controller can apply force
to slow the motor down and keep it from rushing past the goal.

13

