

Carnegie Mellon University

16-681

MRSD Project I

Task 6 Progress Review 1
Team C - COBORG

Jonathan Lord-Fonda
Teammates: Husam Wadi, Feng Xiang, Yuqing Qin, Gerry D’ascoli

March 04, 2021

Table of Contents

Individual Progress 1

Challenges 2

Teamwork 3

Plans 4

Appendices 5
Appendix 1 - main_state_machine Node Code 5

1. Individual Progress
My primary task since the previous Individual Lab Report (ILR) was to update
the ROS Node Maps, as seen in Figure 1 and Figure 2. I added the
functionality of a gain_setter node, which will allow the system to adjust its
control characteristics as it executes different tasks and parts of those tasks.
For example, the gain_setter node may set a high proportional gain for the
motors at the beginning of the robot’s trajectory so that it can quickly approach
its target and then lower the proportional gain and increase the derivative gain
as it nears the target to prevent hard impact at close proximity. Once the arm
is within a certain distance, the gain_setter node may switch control schemes
entirely to an impedance-driven control process to promote better movement
compensation of the arm.

The next update to the ROS Node Map involved altering the vision system.
Initially the plan was to use a Localizer node to continuously generate
transforms between the tracking camera and the global frame. After digging
into the operation of the tracking camera, Husam noticed that the camera
performed these transformations automatically and published them to
/tf_static. With no more need to generate transformations in a node, the other
operations encompassed by the Localizer node were wrapped into the
Goal_Setter node and the Localizer node was eliminated.

The final change to the ROS Node Map was adding a speaker output. After
setting up the voice_recog node, Gerry realized that auditory feedback to the
user would help them understand when the COBORG was listening for a
command and when it had successfully parsed one. I realized that it would
also benefit the user to know when the COBORG system was done executing

a command and ready for another; it would be particularly useful for the “Hold”
command as it would let the user know that the COBORG was fully supporting
the part and they could remove their hands. To that end I added the node with
a topic flowing from both voice_recog and main_state_machine.

Figure 1 - Updated ROS Node Map, Semantic Descriptions

The primary changes that occurred between this version and the previous include removing
the Localizer node and wrapping some of its functionality into the Goal_Setter node, as well as
adding and connecting the Speaker and gain_setter nodes. Additional changes include small
topic adjustments, such as sending the overall state to more nodes and adding a caution state
on top of the emergency branch.

1

Figure 2 - Updated ROS Node Map, Node and Topic Descriptions

As described in the caption for Figure 1, a number of nodes and topics were added and
named. Additionally, which is unique to this graph, the specific topics were rearranged to
accommodate the increased connections; currently five separate nodes read /state_output,
whereas only two were subscribed to this topic previously.

Besides working on the ROS Node Map I also coded out the
main_state_machine node. Previously I had written a semantic description of
how it would function, but this time I coded the entire system into ROS and
Python. The full code for the node can be found in Appendix 1. Additionally, I
wrote out a semantic description of the Goal_Setter node to facilitate
discussion between Yuqing and I. It allowed me to accurately express my
ideas to her so that she could review them, understand them, and highlight
any problems that stood out to her. The full semantic description for the
Goal_Setter node can be found in Appendix 2.

Alongside these other tasks I also helped Jason and Husam construct a
structure to hold our COBORG robot and allow for full demonstrations. While
rather simple, its modularity allows us to quickly adjust the height and angle of
the board so that we can test our robot under varying circumstances and judge
its performance accordingly.

2. Challenges
My primary goal listed for this review cycle was to implement the
main_state_machine node in ROS and have it interface with the voice_recog

2

node, demonstrating that it could recognize and respond to commands from
the voice system. Embedded in this task was the assumption that I would be
able to finish installing Linux and ROS on a flash drive, write and test the code
on my personal laptop, and then push the code to GitHub and use that to
interface it with the voice system. Unfortunately, after spending roughly ten
hours on installing Linux and ROS semi-successfully in previous weeks, I
returned to my flash drive to find out that it did not retain any of the programs I
had downloaded on my previous attempts. Apparently a full installation of
Ubuntu on a flash drive is not the same thing as a persistent installation of
Ubuntu on a flash drive. After another four or more hours of researching and
installing I finally succeeded, but that was at 2:00 on the morning of the
progress review, so I was unable to fully implement and integrate the
main_state_machine node.

Deleting the Localizer node increased the complexity of the Goal_Setter node
which now contains a number of different features. This increased complexity
led me to discuss it with Yuqing at length and write up a semantic description
of the node as I envisioned it, a task that I had not planned for. The effort
required by this task was time well spent, but that was time unaccounted for in
the plan that could have gone to one of the other challenges in this section.
Additionally, the current semantic description doesn’t go into detail and we’re
still unsure about how exactly we will transform the RGB images, 3-d point
clouds, and pose frames to align so that we can compare them consistently.

Another challenge that cropped up while looking at the ROS Node Map was
the effectiveness of our actuated manipulation branch. Currently we’d like to
account for the user’s movement while the robot is in motion, but with RRT
Connect taking 0.5 to 1 seconds to generate a path, it is likely that we’ll need
to use other features to correct for the user’s motion outside of our path
planning. One possible feature we could implement would be a node that
would continuously shift the most recent path’s waypoints by small amounts to
account for the user’s movement. We could also continuously run RRT
Connect for newer paths and dedicate our computer’s GPU to RRT Connect
paths to reduce the time taken to generate a path.

3. Teamwork
Over this past week, Jason created the URDF model for the COBORG system
and integrated it with Move-It. In a great success for our project he was also
able to assign the arm to move to a point selected in RVIZ and have it actually

3

move to the point. He also helped clean up our lab space and create a
demonstration structure to hold the COBORG system.

Since the last progress review, Gerry redesigned the voice recognition system
to understand “Coborg” as a trigger word while also retaining a full dictionary
so that it could tell “Coborg” apart from other words. In addition to this he
wrote a script that could translate verbal commands into instructions for the
robot and demonstrated its functionality by integrating his script with an audio
feedback system which he programmed with a variety of sounds.

Over the past week, Yuqing installed a ROS package for the Realsense D435i
camera and launched YOLO v3 with hand detection. In order to bring these
two features together, Yuqing created a ROS wrapper for the YOLO model
and tested it with the D435i camera. In order to improve its speed she set it up
to run on her computer’s GPU and achieved speeds around 200 frames per
second, far more than is required for our project.

Since the last progress review, Husam cleaned up our lab space and created
a structure to both hold the COBORG robot and demonstrate the system. He
also adapted the timeline to account for the increased homework load in the
team’s immediate future and performed some risk analysis accordingly.
Husam also assisted Jason with understanding the Intel Realsense T265 and
helped Yuqing with the Intel Realsense D435i. He also helped me by making
some changes to the ROS Node Map and explaining to me how the T265 fit
into the node map. Husam also set up the Github repository and ensured that
the team utilized it for version control.

4. Plans
Before the next progress review I would like to fully implement the
main_state_machine node in ROS and integrate it with the voice_recog node.
Additionally I would like to write out a semantic description of the Gain_Setter
node and apply any necessary changes to the ROS Node Map as they
become apparent.

Besides the overarching project planning, I would also like to work alongside
Jason on the actuated manipulation branch of the project. The first step would
be to sit down with him and absorb all of the information he’s learned in regard
to it. After that I would like to plan out a detailed roadmap for developing the
actuated manipulation branch and take at least one task upon myself to

4

complete before the next progress review. What this task is will be determined
by Jason himself.

In addition to the directly-related project tasks, I would also like to do the CAD
work for our PCB assignment. While not directly a part of our project, this
assignment will form a basis for part of our project that we design later.

5. Appendices
5.1. Appendix 1 - main_state_machine Node Code

#! /usr/bin/env python

import rospy
from std_msgs.msg import Int32
from std_msgs.msg import Char

Updates List:
Consider changing the state machine to work on actions instead of publisher/subscriber
Figure out how to publish sounds to speaker

Functions:
0 = e_stop > Shut off power to motors
1 = caution > Motors stop moving, but maintain with lower torque threshold
2 = hold > Move to and hold plate
3 = compact > Return to home position

Statuses:
a = initializing > Command received, but not executing yet (e.g. detecting hands)
b = executing > Command being executed (e.g. moving to target)
c = waiting > Command completed/performing "holding" task, ready for next command
(maintaining position in 3d space)

Speaker Sounds:
0 = start-up > System has launched
1 = listening > Keyword “COBORG” identified, awaiting full command
2 = understood > Voice command understood
3 = not understood > Voice command not understood
4 = emergency > Emergency command detected
5 = waiting > Task completed, available for next command

Function for /voice_command
def new_command(new_command):
 if new_command == 0:

5

 function = 0 # e_stop
 status = a # initializing
 state_output_pub.publish(function)
 else if new_command == 1:
 if function != 0:
 function = 1 # caution
 status = a # initializing
 state_output_pub.publish(function)
 else if new_command == 2:
 if status == c:
 function = 2 # hold
 status = a # initializing
 state_output_pub.publish(function)
 else if new_command == 3:
 if status == c:
 function = 3 # compact
 status = a # initializing
 state_output_pub.publish(function)

Function for /state_input
def status_update(new_status):
 if new_status == b:
 status = b # executing
 if new_status == c:
 status = c # waiting
 speaker_output_pub.publish(5)

Initializations
rospy.init_node('Main_State_Machine')
function = 3 # compact
status = a # initializing
voice_commands_sub = rospy.Subscriber('voice_commands', Int32, new_command)
state_output_pub = rospy.Publisher('/state_output', Int32, queue_size=1)
speaker_output_pub = rospy.Publisher('/speaker_output', Int32, queue_size=1)
state_input_sub = rospy.Subscriber('state_input', Char, status_update)
state_output_pub.publish(function)
speaker_output_pub.publish(0)

rospy.spin() # Should this just be spin()?

5.2. Appendix 2 - Goal_Setter Node Semantic Draft

Goal_Setter Intuitive Draft

On Start-up{

6

Initialize publisher to /state_input
Initialize publisher to /goal
Initialize publisher to /yolo_input
Initialize subscriber to /state_output
Initialize subscriber to /rgb_input
Initialize subscriber to /3d_input
Initialize subscriber to /tf_static
Initialize subscriber to /bound_box

}

If receiving a 2 from state_output (COBORG Hold command){

///////////////////// This could be a first step, essentially, can we pull in a set of data?
Create rgb vector
Create 3d points vector
Create /tf_static vector
Create bound_box vector
Add the current rgb image to rgb vector
Add the current 3d points to 3d point vector
Add the current pose to /tf_static vector
Publish rgb to /yolo_input
Create index i to iterate through all vectors
/////////////////////

}

On receiving an image from YOLO{

///////////////////// This could be a second step, testing if we can evaluate YOLO's results
well and tuning the system.

///////////////////// If YOLO ends up being really accurate here, we can throw out most of the
complexity later

Check to see whether the bounding box's accuracy passes a threshold.

If it doesn't, either throw the results out or simply add another data
set to each vector and publish the rgb to /yolo_input.

If the bounding box (or boxes) achieve a certain threshold of accuracy or
intersection, run Goal Finding Program (below)
/////////////////////

}

Goal Finding Program (runs after good enough results are achieved){

Create bounding box midpoints vector (Maybe create a "left" and "right" one?)
Create Goal Midpoints vector
Create Goal Locations vector
Create Goal Poses vector

7

///////////////////// This could be a third step, can we transform the images to a global

reference?
///////////////////// If we're doing this I guess we might have to grab the 3-d coordinates of the

bounding boxes
Use /tf_static vector to transform bounding boxes into the global frame of reference
/////////////////////

///////////////////// This could be a fourth step
Find intersection of leftmost bounding boxes
Find midpoint of leftmost bounding boxes (H/2,W/2), add it to the bounding box

midpoints vector
Find intersection of rightmost bounding boxes
Find midpoint of rightmost bounding boxes (H/2,W/2), add it to the bounding box

midpoints vector
Find Goal Midpoint between bounding box midpoints, add it to the Goal Midpoints vector
/////////////////////

///////////////////// This could be a fifth step, potentially done at the same time as the third

step?
Use /tf_static vector to transform 3-d point clouds into the global frame of reference
/////////////////////

///////////////////// This could be a sixth step, similar to the fourth step, but using

multi-dimensional splines because the 3-d point cloud is sparse
Change 3-d point clouds to splines
Find the depth of each point corresponding to Goal Midpoint in each of the 3-d point

clouds, add the 3-d point to Goal Locations vector
/////////////////////

///////////////////// This could be a seventh step, can we get the pose of the plate from the 3-d

point cloud? Again, we can use the spline.
For each of the Goal Midpoints in each of the 3-d point clouds, check a small area

around the Goal Midpoint to determine the surface pose, add it to Goal Poses vector
^-This could be as simple as + and - 1 pixel vertically and horizontally to determine the x

and y components of change in depth
/////////////////////

///////////////////// This could be an eighth step, if everything else works, can we smush it

together and publish our final answer?
Average Goal Locations
Average Goal Poses
Publish the averaged Goal Locations and averaged Goal Poses to /goal

8

Publish "b" to /state_input to let the Main_State_Machine node know that the command
is done initializing and is now executing

/////////////////////
}

9

