
Carnegie Mellon University

Individual Lab Report #1

Author:

Yuqing Qin

Team C: COBORG
Gerald D'Ascoli | Jonathan Lord-Fonda | Yuqing Qin | Husam Wadi

Feng Xiang

February 25, 2021

Table of Content

1 Individual Process 1

1.1 Sensors and Motors Lab 1
1.1.1 Sensor 1
1.1.2 Motor 2
1.1.3 Circuit and Code 2

1.2 MRSD Project 3

2 Challenges 3
2.1 Sensors and Motors Lab 3
2.2 MRSD Project 3

3 Teamwork 4
3.1 Sensor and Motor Lab 4
3.2 MRSD Project 5

4 Plans 5

Appendix A Code 6

Appendix B Quiz 8

1 Individual Process

1.1 Sensors and Motors Lab
In the sensor and motor lab, my work mainly focused on designing simple circuits and
developing microcontroller codes for sensors, specifically the flex sensor and IR
distance sensor. The flex sensor is a resistance sensor whose value depends on the
bending angle. The IR sensor outputs different voltage values based on the distance to
the object. I also integrated the code for the flex sensor and servo motor so that bending
the flex sensor will control the movement of the servo motor.

1.1.1 Sensor
The flex sensor I used in the lab is SEN-10264, which is a resistance sensor. Its
working mechanism is shown in Figure 1. As the sensor is bent, the resistance value for
the sensor increases. From the datasheet, I knew that the flat resistance for this sensor
is 25kOhms. To test the real bending resistance range, I designed a voltage divider
circuit with a resistor (R=10kOhms) in series. The power supply is 5V from the
microcontroller (Arduino Uno) and the output voltage for the flex sensor is connected to
the analog pin of Arduino. The value reading from the analog pin is from 700 to 860
when I bend the sensor from 0 to 90 degrees. As with the 10-bit microcontroller settings,
the corresponding voltage for the sensor is from 3.41V to 4.20V. Therefore, the real
resistance range for this flex sensor is from 21kOhms to 53kOhms.

Also, the output voltage from the flex sensor is noisy, so I added capacitors (C = 100nF)
between each resistor and implemented a moving average filter from the analog
readings to smooth the output. By testing on different window sizes for the average
filter, I found the proper window size to smooth the output.

Figure 1. Flex sensor resistance changing with angles

1.1.2 Motor
The motor I used for this lab is a servo motor. The servo motor has a built-in library in
Arduino, which is called “Servo”. It allows me to directly write the moving degrees into
the motor. The moving range of the servo motor is from 0 to 180 degrees. Therefore, I
map the flex sensor output to the motor degrees. Moreover, the power for the servo
motor is 5V, so I connect the power pin with the 5V pin on the Arduino to get enough
power supply.

1.1.3 Circuit and Code
To prototype the circuit, I utilized TinkerCAD software to simulate it and later test it on a
breadboard. The voltage divider circuit is shown in Figure 2. The output voltage for the
flex sensor is connected to the analog pin A1 on Arduino, and the servo motor is
connected to the digital pin 9 on Arduino. The resistor for the voltage divider is
10kOhms, and the capacitors to filter the noise are both 100nF.

Figure 2. Circuit diagram

The code for the microcontroller is attached in Appendix A. It contains the code for
reading flex sensor input and writing the mapped degree into the motor. Also, the
moving average filter code is implemented in the code as well. I also worked on testing

the IR sensor and converting the IR sensor output to the physical unit (cm). The code I
contributed to is also shown in Appendix A.

1.2 MRSD Project
My work from the last semester mainly focuses on the perception subsystem
implementation, specifically on the hand detection part. During the last few weeks, I
worked on the YOLO v3 hand detection model setup and testing. I found someone has
already trained the YOLO on several hand datasets, so I downloaded the pre-trained
YOLO v3 model with weights and configuration files into my workspace. I tested on my
CPU setting, the YOLO v3 tiny model works well and it is much faster than the YOLO v3
model. Therefore, we decided to use the tiny version of YOLO to do the hand detection.

Moreover, I launched the ROS node for the Intel Realsense D435i depth camera. I set
up the camera and launched the ROS node for the camera. By checking the available
topics connected to the node, I found the raw RGB image topics can be fed into the
YOLO model and get detection results. Therefore, I am currently working on the ROS
node build for YOLO and connecting the YOLO node to the camera node.

2 Challenges

2.1 Sensors and Motors Lab
During the lab, the main challenge I had is to filter the noise for the flex sensor. The
noise will make the motor sensitive to the sensor output. I both applied capacitors
between the resistors and also applied an average filter to the output. As a result, using
two capacitors can effectively smooth the output, and an average filter can also help
with the output.

2.2 MRSD Project
The problem I had for the past few weeks is about the running speed for YOLO v3. It
does not fulfill the performance requirements. We set up the performance requirement
for the run time within 5 seconds, but currently, the YOLO v3 running on the CPU is
slow. I further tried different models, also tried YOLO v4 and YOLO v3 tiny. It turns out
that the tiny version of YOLO is much faster even on CPU settings. At the same time,
the accuracy of hand detection is good enough for our project.

3 Teamwork

3.1 Sensor and Motor Lab

Team Member Sensor Motor Motor Lab Contribution

Feng Potentiometer Servo motor Mapped potentiometer sensor analog
output to servo-motor input. Collaborated
with Yuqing to develop a control
relationship between potentiometer and
flex sensor with servo motor output.
Helped combine code together to get
arduino-only arduino code state.

Jonathan Ultrasonic Stepper
motor

-Soldered DC motor controller board
-Wrote switch debouncer code
-Wrote code structure
-Wrote program for stepper motor
-Wrote program for ultrasonic sensor

Gerry IR Dc motor -Wired DC motor and motor controller to
each other and arduino
-Debugged electrical issues
-Wrote PID control of DC motor using
encoder for state and IR sensor as input
for desired state
-Wrote program to control stepper motor
position using the ultrasonic sensor as
input.

Husam GUI -Created a ROS publisher and subscriber
node in Arduino to send/receive data

-Created a serial interface between ROS
and the Arduino using “rosserial”

-Created a custom message class “CMU”
that handled sensor data outputs

-Created a URDF that controlled the
motor outputs through joint_states
publisher

-Created a visualization in RVIZ to show
the GUI motor control output

-Created a RQT GUI that contained RVIZ
and 5 plots that displayed all the sensor

Table 1. Teamwork Contribution on Motor Lab

3.2 MRSD Project

Table 2. Teamwork Contribution on COBORG

4 Plans
For the next few weeks, I will be mainly focusing on the ROS node (Goal_getter), which
should align the bounding box information to the point cloud to obtain the 3D position of
detected hands. Also, I will work on the tracking camera (Intel Realsense T265) and set
up ROS nodes for it. Furthermore, I will combine it with the D435i Depth Camera to get
the 3D position relative to the world frame.

outputs in real time

Team Member Work Description for COBORG

Feng Developed pipeline between MoveIt and HEBI API and Coborg
motors
Developed URDF and initialized moveit to move robot in RViz

Jonathan -Wrote the initial BOM for the current system
-Created initial ROS node map
-Sketched out main state node
-Installed Linux/ROS and completed ROS training
-Tested the arm’s max lift at full extension
-Reviewed Jason’s 3-D model of COBORG

Gerry Developed prototype of voice system. Generated a custom
implementation of pocketsphinx on the CoBorg system and
created custom libraries and recognition files to tailor the voice
system to the CoBorg’s specific requirements and functions.

Husam -Manage and updating project timeline to adapt to the semester
load

-Used scrum/agile methodologies through kanban boards to map
out weekly project work

-Deepened ROS interconnectivity knowledge by researching
state machines in ROS and going through ROS tutorial
examples.

Appendix A Code
#define WINDOW_SIZE 10
#include <Servo.h>

int flexPin = A1; // flex sensor
int IRpin = A2; // IR sensor

const int SERVO_PIN = 9;
Servo servo;

// average filtering
int readings[WINDOW_SIZE];
int sum = 0;
int index = 0;

int avgFilter(int reading)
{
 sum -= readings[index]; // remove the earliest reading
 readings[index] = reading; // update the reading array
 sum += readings[index]; // add new reading to the sum
 index = (index+1) % WINDOW_SIZE; // move the “index” pointer to the next
 return sum/WINDOW_SIZE;
}

void setup(void) {
 Serial.begin(9600);
 pinMode(SERVO_PIN,OUTPUT);
 servo.attach(SERVO_PIN);
 for (int i=0; i< WINDOW_SIZE; i++){
 readings[i] = 0;
 }

}

void loop(void) {
// IR sensor
// int reading = analogRead(IRpin);
// int average = avgFilter(reading);
// Serial.println(average);
// float voltage = (average/1024.0)*5;
// float dist = 50.6/(voltage-0.173); // cm
// Serial.println(dist);

// Flex sensor (resistance VS force)
 int val = analogRead(flexPin); // 700-860 -> 3.45V-4.29V (0-1023 -> 0-5V) . R = 10k . Rx =
22k to 60k
 int avg = avgFilter(val);
 Serial.println(avg);
 float angle = map(val, 700, 860, 0, 180.0);
 servo.write(angle);

 delay(100);
}

Appendix B Quiz
1. Datasheet

a. Sensor’s range: ±3 g,
In the datasheet, “All minimum and maximum specifications are
guaranteed. Typical specifications are not guaranteed”, so the range/span
(based on “input signals outside this range are not guaranteed to meet the
sensor’s specifications” in slide) for sensor is ±3 g

b. Dynamic range/full scale: 6 g (guaranteed)
c. Adding Cdc is to filter out the high-frequency noise from the power supply

(decoupling). Capacitors will act as a low resistor when high-frequency
noise comes so that it will allow the noise coming through the capacitor to
smooth the power supply.

d. Transfer function: Vout = 1.5V + 300mV/g * a
e. largest expected nonlinearity error: 0.3% * 6g = 0.018g
f. 25Hz noise: From the datasheet note

150*sqrt(25*1.6) = 0.00095g

g. Not mention the 0Hz noise in the datasheet. The smallest bandwidth is
0.5Hz. We can connect the sensor to the Arduino, 0Hz means the sensor
is kept the same stage (either no input or same input), so no sensor input
and measure the changes from the Arduino output.

2. Signal Conditioning

a. Filtering
i. Moving average filter: 1. Sensitive to the large jump(outliers), will

not entirely get rid of the outliers 2. Lag behind the real noisy data

ii. Median filter: 1. Its computation cost is large because every time
needs to sort the window 2. Sometimes may not be able to remove
the noise(outliers) if have a lot of consecutive noises (wide outliers)

b. Op-amp:
i. -1.5V -> 0V , 1V -> 5V

V1 is reference voltage, V2 is Vin, as a result:
Vout = Vin*(1+Rf/Ri) -Vref(Rf/Ri)
1+Rf/Ri = gain = (5-0)/(1-(-1.5)) = 2
=> Rf/Ri = 1
=> Vref = -3V

ii. -2.5V -> 0V , 2.5V -> 5V

If V1 is reference voltage, V2 is Vin, as a result:
Vout = Vin*(1+Rf/Ri) -Vref(Rf/Ri)
1+Rf/Ri = gain = (5-0)/(2.5-(-2.5)) = 1
=> Rf/Ri = 0
Not possible to calibrate this range to (0V,5V)

If v1 is VIn, V2 is reference voltage:
Vout = -Vin*(Rf/Ri) +Vref(1+Rf/Ri)
Rf/Ri = gain = 1
Not possible to find Vref to fulfill the equations

3. Control:
a. For Kp, the output from DC encoder, will be subtracted to the desired

position, use the error for position as the input for Kp
For Kd, need to estimate the velocity of the motor, and subtract with the
desired velocity, and use the error for velocity as the input for Kd
For Ki, integrate the position error from start as the input for the Ki term.

b. Sluggish: increase Kp to reduce rising time, quicker to get the desired

position
c. Steady-state error: increase Ki to make the steady-state error closer to 0
d. Overshoot: Increase Kd to reduce the overshoot

