Collaborative Cyborg Backpack Platform (CoBorg)

Preliminary Design Review

Gerry D'Ascoli Jonathan Lord-Fonda Yuging Oin Husam Wadi Feng Xiang

Project Description Overview

Industrial Manufacturing Use Case

Project Description: Spring 2021

Project Description: Fall 2021

Mandatory Functional Requirements

- FM-1: Shall detect intended object in 3D space.
- FM-2: Shall move end effector to intended object in 3D space.
- FM-3: Shall maintain object position in 3D space.
- FM-4: Shall respond to preconfigured voice commands.
- FM-5: Shall release control of object at current position.
- FM-6: Shall navigate to designated home position.

Mandatory Performance Requirements

- PM-1.1: Will have 60% accuracy of detecting indicated part position in 3D space.
- PM-1.2: Will detect intended object within 5 seconds of when the move command is issued.
- PM-2: Will reach the target planned target position 60% of the time.
- PM-3.1: Will maintain target in place target's spatial position with less than 12 6 in of error margin.
- PM-3.2: Will provide lift at least 2 lbs at full horizontal extension to hold part.
- PM-4.1: Will be able to understand the voice command 60% of the time.
- PM-4.2: Will be able to understand 2+ unique voice commands.
- PM-4.3: Will be able to understand commands of 2+ words in length.
- PM-5: Will release object within 5 seconds of when the release command is issued.
- PM-6: Will bring full robot arm to within 20 inch of the point of attachment to the backpack.

Carnegie Mellon

Mandatory Non-functional Requirements

- NM-1: Will be ergonomic for spinal comfort.
- NM-2: Will weigh less than 40 lbs.
- NM-3: Will be aesthetically pleasing.
- NM-4: Will operate safely.
- NM-5: Will be simple to operate.
- NM-6: Will be operable untethered for 20 minutes.
- NM-7: Will require minimal part modification.
- NM-8: Will be operable on a portable computer.

Carnegie Mellon

Desired Requirements

Functional:

FD-1: Shall re-orient the object based on the voice command by user.

Performance:

- PD-1.1: Must be able to detect part while 20% of the part is occluded.
- PD-1.2: Must be able to be invariant to part texture, specifically matte finish and gloss finish.
- PD-1.3: Shall detect the orientation of the part (x,y,z,w,p,r) with error no greater than 45°.

Non-Functional:

ND-1: Will be able to operate standalone (no WiFi).

Carnegie Mellon

Functional Architecture

Cyber-Physical Architecture

11

Subsystem: Software Framework

V3

Subsystem: Hardware Framework

Depth Camera - Intel D435i

Pose Camera - Intel T265

Microphone - AU-UL10 USB Lavalier

Carnegie Mellon University

Current Status: Hardware Framework

Intel D435i - Depth Camera

Intel T265 - Tracking (V-SLAM) Pose Camera

Subsystem: Voice Recognition

Input: Audio stream from Microphone

Output: Commands to the ROS framework main_state_machine

Process:

- Recognize "COBORG" with PocketSphinx using a limited library
- Process following phrase with PocketSphinx using the full library
- Publish valid recognized commands to /voice_commands topic

Current Status: Voice Recognition

- Functional prototype model completed!
- Integrated into ROS framework
- Current Accuracy:

Keywords		Commands	
COBORG	100.00%	Goal	80.00%
Repeat: STOP	80.00%	Home	70.00%
		Stop	70.00%
		Commands Overall	73.33%

('Decoder Mode:', 'coborg')
('Decoder Mode:', 'lm')
('Result:', ['so'])
('Decoder Mode:', 'coborg')
('Decoder Mode:', 'coborg')
('Decoder Mode:', 'lm')
('Result:', ['wow'])
('Decoder Mode:', 'coborg')
('Decoder Mode:', 'lm')
('Result:', ['yellow', 'working', 'away', 'nine', 'laps', 'of', 'infuriating', '
that's", 'us'])
('Decoder Mode:', 'coborg')

Subsystem: Perception

Input: Raw RGB image + point cloud

• D435i will outputs RGB raw image and also point cloud

Output: 3D target part position relative to camera_link

Process:

- 2D YOLO v3 hand detection to extract pixel level bounding box => ROS
- 3D Hand bounding boxes using point cloud data => ROS
- Post-process to get averaged 3D position of hands relative to camera_link => ROS

Hand Detection

17

Carnegie

University

Mellon

Current Status: Perception

3D Hand bounding boxes

2D YOLO hand detection

Averaged 3D position

x: 0.944481814901 v: 0.0347031770895 z: 0.0733169429004 Accuracy Validation

Subsystem: Actuated Manipulation

<u>Input:</u> 3D position relative to camera_link + TF frame transforms + point cloud

- Perception subsystem output 3D position of hands relative to camera_link
- TF frame transforms between global odom frame, camera_link and URDF frame
- D435i will outputs RGB raw image and also pointcloud

<u>Output:</u> Robot actuation to goal states

Process:

- Process 3D goal position relative to the camera_link
- Plan path from current state to goal state in free space
- Execute path
- Execute force/torque control
- Calculate temporal transform in t265_odom_frame
- Execute compensation actuation
- (Release) Upon release signal, execute release and "go home"

Subsystem: Actuated Manipulation

	RRT*	RRT-Connect	PRM*
Methodology	Optimal node graphing from start to goal	Two instances of node graphing at start AND goal	E uilds node graph among 3D environment in multiple instances
Runtime Complexity [sec]	1 - 6	0.05 - 1	2 - 6
Non-static Environment Performance	Works well	Works well	N ot optimized
Implementation to ROS?	Movelt OMPL Motion Flanning Library		
Motivations	Trajectory path optimization over time	Efficient path planning framework	Nulti-query option

Carnegie Mellon University

Subsystem: Actuated Manipulation

Stabilization

Input: Global frame transform

TF frame transforms between camera and t265_odom_frame

Output: Robot force actuation to updated goal state

Process:

- Execute force/torque control
- Calculate temporal transform in t265_odom_frame
- Update 3D goal position
- Execute compensation actuation
- (Release) Upon release signal, execute release and "go home" trajectory

Current Status: Actuated Manipulation - PR 1

Carnegie Mellon University

Current Status: Actuated Manipulation - PR 2

Carnegie Mellon University

Project Management: WBS

LEGEND

LEVEL 1

LEVEL 2

Project Management: Spring Schedule (Updated)

Project Management: PR3

Functionality	Test Plan
Actuated Manipulation:	Create a ROS node that publishes a point every second to Move-It
	Use this point to update the robot arm as it moves towards the goal
Vision System:	Have two 3D bounding boxes output to a single median point in ROS
Voice System:	Confirm accuracy requirements during integration

Project Management: PR4

Functionality	Test Plan
Actuated Manipulation:	Perform torque/force control on robot arm
	Validate Robot Arm Precision
	Validate Motion Planning Time
Vision System:	Publish D435i point to robot arm through Move-It
	Validate D435i Vision System Precision

Project Management: SVD Overview

- Testing subsystems independently
- Four different tests:
 - Vision Subsystem
 - Actuated Manipulation Subsystem
 - Voice Subsystem
 - Nonfunctional
- Location: Newell Simon Hall B512

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.clipartkey.com%2Fview%2FiRbRTbi_validatorerrorsgraphic-cpsi-ltd-data-validation-automation%2F&psig=AOvVaw275_w1jDlzb4NLuXA7lgY8&ust=1616452312449000&source=images&cd=vfe &ved=0CAIQjRxqFwoTCIDBj6e4wu8CFQAAAAAAAAAAABAD

PM: SVD - Vision Subsystem

Functionality	Test Plan
PM1.1, PD1.3: Correctly and accurately detect part	Compare measurement to ground truth
PM1.2: Minimal lag time	Time process
PD1.1, PD1.2: Detect part while occluded and despite different surface finishes	Cover with hands, paint part

https://tinyurl.com/45tujufu https://tinyurl.com/249dv6m3 https://tinyurl.com/3w4pz3dy https://i.pinimg.com/originals/19/2b/94/192b948b78f2d84747596152816f27df.png

PM: SVD - Actuation and Manipulation Subsystem

Functionality	Test Plan	
PM2: Reach Target with low error	Compare results to ground truth	
PM3.2: Will be able to lift at least 2 lbs. at full extension	Perform strength test	KG
PM6: Will bring arm to within 20" of the attachment point	Measure resulting position	Carnegie Mellon

PM: SVD - Voice Subsystem

Functionality	Test Plan
PM4.1: Will interpret voice commands with a high accuracy	Record results
PM4.2, PM4.3: Will be able to understand multiple commands of multiple words	Inherent to commands list
PD2.1: Speaker will alert user to state changes	Record results
NM9: Audio feedback will be clearly audible	By observation

31

https://tinyurl.com/4d49hjnx https://tinyurl.com/3x5t4vzd

PM: SVD - Nonfunctional

Functionality	Test Plan
NM1: Will be ergonomic and comfortable to wear	By qualitative assessment and by nature of base frame
NM2: Will weight less than 40 lbs.	Indirect weight measurement

32

https://tinyurl.com/3jety3s6 https://tinyurl.com/y3wtxraf

Project Management: FVD - Full Use Case

Functionality	Test Plan
All of the previously listed requirements	By nature of successful use case, record times, etc.
PM3.1: Will maintain the target location with ≤ 6" of error	By nature of successful use case
PM5: Will release the object within 5 seconds of command issue	Time Process
NM4, NM5, NM8, ND1: Will be safe, simple, portable	By nature of successful use case and product (estop, torque limits, etc.)
NM6: Battery life ≥ 20 minutes	By nature of successful use case
NM7: Part Invariant	By nature of product

https://tinyurl.com/45tujufu https://tinyurl.com/249dv6m3

Project Management: FVD - Non Functional

Month	Functionality	Test Plan
September	PM3.2: Will be able to lift at least 2 lbs. at full extension	Strength test
September	NM2: Will weigh less than 40 lbs.	Indirect weight measurement
October	Hardware Framework: Fabricate a new enclosure for the robot system	By observation
November	Added Tasks: Test out new use case using robot system	Variable, but similar to Full Use Case testing plan

Carnegie Mellon

Project Management: Risk

Risks	Title		
'T' = Technical, '	'T' = Technical, 'R' = Resource, 'P' = Programmatic		
RT1	Hebi motor module dies		
RT2	Main computer dies or does not perform per our requirements		
RT3	Estop devices malfunction		
RT4	TCP/IP connectivity is lost		
RT5	Salus Robot disinfects CoBorg with a generous coat of liquid		
RR1	Team lacks ROS fundamentals by start of spring semester		
RR2	Unable to work 10hrs/week/member on MRSD project		
RR3	Hazard occurs on user while wearing robot		
RP1	Member contracts COVID-19		
RP2	MRSD program gets disrupted due to COVID-19 pandemic		
RP3	Our sponsor graduates in the spring of 2020		
RP4	End Effector Breaks		

Consequences

Level	Likelihood	Consequences
5	100%	1 Month/\$2,000/Injury
4	80%	2 Weeks/\$1,000
3	60%	1 Week/\$500/Loss of function
2	40%	3 Days/\$200
1	20%	1 Day/\$50
		University

Project Management: Risk

Risk Title:	Risk Owner:	Date Submitted:		Date Updated:		
Main computer dies or does not perform per	Husam	11/12/2020		11/27/2020		
Description of Risk:	·	Risk Type?		Consequence	Likelihood	
Critical hardware or OS software malfunction and unbootable. Zotac PC as provided does	mputer inoperable xpectations.		Technical Schedule Cost	4 Mitigated Consequence	4 Mitigated Likelihood	
Consequence if Risk is Realized:		Programmatic	2	3		
	Risk Redur	tion Plan Summa	nv:			
A (B.#*1	Nisk Reduc		· y .			
Action/Milestone	Date	Success Criter	ia		Consequence	Likelihood
Action/Milestone	Date	Success Criter	ia		Consequence Reduction	Likelihood Reduction
Work out of Cloud, Github Repository	Date 11/27/2020	Success Criter	ia only har	dware is affected	Consequence Reduction	Likelihood Reduction
Work out of Cloud, Github Repository Ensure spare workstation is available	Date 11/27/2020 1/21/2021	Success Criter	ia only hai ompute	dware is affected	Consequence Reduction 0	Likelihood Reduction 1 0
Work out of Cloud, Github Repository Ensure spare workstation is available Budget ~\$1300 to purchase new laptop	Date 11/27/2020 1/21/2021 1/31/2021	Success Criter If computer fails, of Hot swap failed co Reduce budget to	ia only har ompute o afford	dware is affected r parts when neede spare	Consequence Reduction 0 1 1	Likelihood Reduction 1 0 0
Action/Milestone Work out of Cloud, Github Repository Ensure spare workstation is available Budget ~\$1300 to purchase new laptop	Date 11/27/2020 1/21/2021 1/31/2021	Success Criter If computer fails, o Hot swap failed co Reduce budget to	ia only har ompute o afford	dware is affected r parts when neede spare	Consequence Reduction 0 1 1	Likelihood Reduction 1 0 0

Mellon

Project Management: Budget

No.	Part Name	Cost	
1	Voice Subsystem Parts	\$34.98	
2	Robot Hardware	\$28.76	
3	Miscellaneous Items	\$180.37	
4	Intel Realsense T265	\$199.99	
5	Computer Parts	\$152.46	
6 Computer Replacement		\$1351.83	
Total Costs		-\$1948.39	
udget Remaining		+\$3051.61	
			Universit

Questions?

Biorobotics Laboratory

Appendix

Agenda

- 1. Project description
- 2. Use case/System graphical representation
- 3. System-level requirements
- 4. Functional architecture
- 5. Cyberphysical architecture
- 6. Subsystem descriptions
- 7. Current system status
- 8. Project management

Team Structure

Feng Xiang Actuated Manipulation

Yuqing Qin Vision Subsystem

Gerry D'Ascoli Voice Subsystem / **Electrical Design**

Jonathan Lord-Fonda Integration / Validation Project Management / Software Framework

Husam Wadi

Hardware Design

Carnegie Mellon University