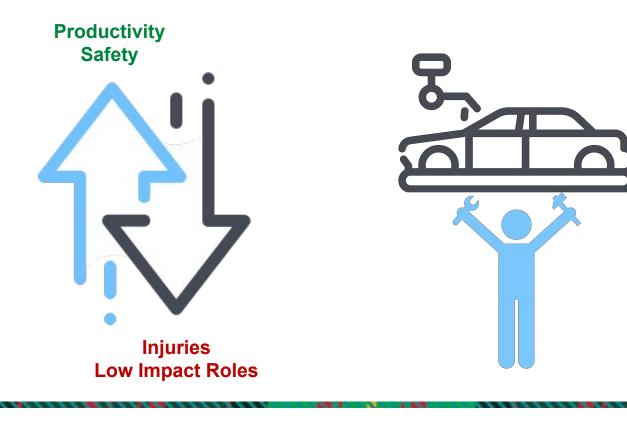
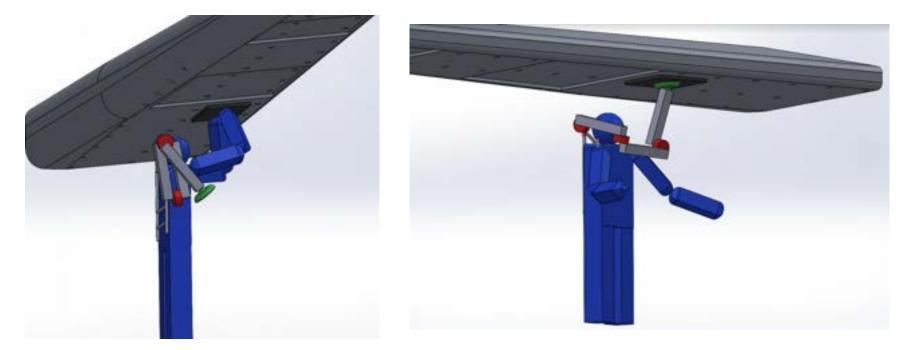
Collaborative Cyborg Backpack Platform (CoBorg)

Critical Design Review

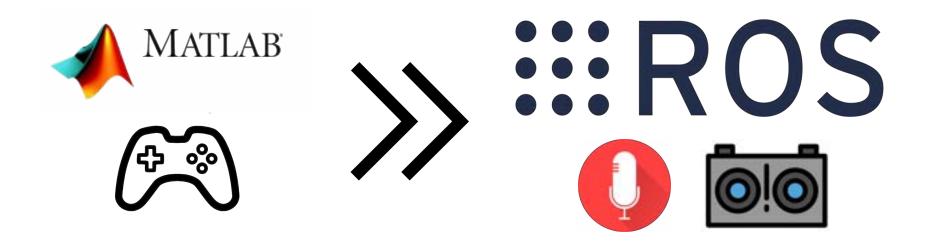

Gerry D'Ascoli Jonathan Lord-Fonda Yuging Oin Husam Wadi Feng Xiang

> Carnegie Mellon

Jniversity



Project Description


Carnegie Mellon University

Industrial Manufacturing Use Case


Carnegie Mellon University

Project Description: Spring 2021

Project Description: Fall 2021

Mandatory Functional Requirements

- FM-1: Shall detect intended object in 3D space.
- FM-2: Shall move end effector to intended object in 3D space.
- FM-3: Shall maintain object position in 3D space.
- FM-4: Shall respond to preconfigured voice commands.
- FM-5: Shall release control of object at current position.
- FM-6: Shall compact arm to "home" position.

Mandatory Performance Requirements

- PM-1.1: Will have 60% accuracy of detecting indicated location with 6" in 3D space, and always within 12".
- PM-1.2: Will detect intended object within 5 seconds of when the move command is issued.
- PM-1.3: Will detect the surface normal of part with error no greater than 45°.
- PM-2: Will reach within 6" of planned target position 60% of the time, and always within 12".
- PM-3.1: Will maintain target's spatial position with less than 6" of error margin.
- PM 3.2: Will lift at least 2 lbs at full horizontal extension.
- PM 3.2: Will be able to hold a representative part overhead
- PM-4.1: Will be able to understand the voice command 60% of the time.
- PM-4.2: Will be able to understand at least 2+ unique voice commands, up to 8.
- PM-4.3: Will be able to understand commands of at least 2 words in length, up to 8.
- PM-5: Will release object within 5 seconds of when the release command is issued.
- PM-6: Will bring full robot arm to within 20" of the point of attachment to the backpack.

Carnegie Mellon

University

Mandatory Non-functional Requirements

- NM-1: Will be ergonomic for spinal comfort. Will be comfortable to wear for 30 consecutive minutes.
- NM-2: Will weigh less than 40 lbs.
- NM-3: Will be aesthetically pleasing.
- NM-4: Will operate safely.
- NM-5: Will be simple to operate.
- NM-6: Will be operable untethered for 20 minutes.
- NM-7: Will require minimal part modification to assist with assigned tasks.
- NM-8: Will be operable on a portable computer.
- NM-9: Audio feedback will be clearly audible in representative work environment.

Spring Semester Targeted System Requirements

Vision Subsystem (~100%):

- PM1.1 Will have **60%** accuracy of detecting indicated location within **6" in 3D space**, and **always within 12"**.
- PM1.2 Will detect intended object **within 5 seconds** of when the move command is issued.
- PM1.3 Shall detect the **surface normal** of the part with error no greater than **45**°.
- PD1.2 Must be **invariant to part texture**, specifically matte finish and gloss finish.

Voice Subsystem (~100%):

- PM4.1 Will be able to understand the voice command **60%** of the time.
- PM4.2 Will be able to understand at least **2 unique** voice commands, **up to 8**.
- PM4.3 Will be able to understand commands of at least **2 words** in length, **up to 8**.
- PD2.1 Speaker will alert user to state changes with an **80%** success rate.
- NM9 Audio feedback will be **clearly audible** in representative work environment.

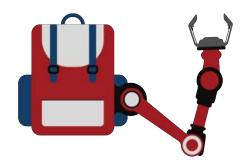
Actuated Manipulation Subsystem (~75%):

- PM-2 Will reach within 6" of the planned target position 60% of the time, and always within 12".
- PM-3.2 Will be **able to hold** a representative part overhead.
- PM-6 Will bring full robot arm to within **20**" of the point of attachment to the backpack.

Hardware (~20%):

- NM-1 Will be ergonomic for spinal comfort.
- NM-2 Will weigh less than 40 lbs.

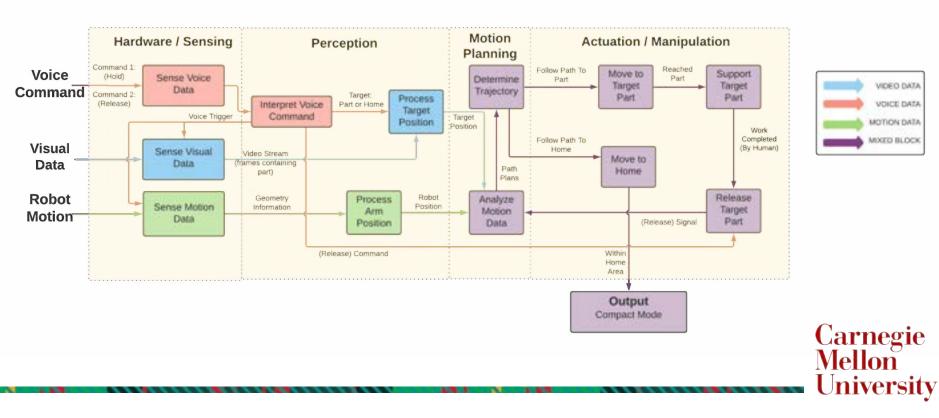
Overall System

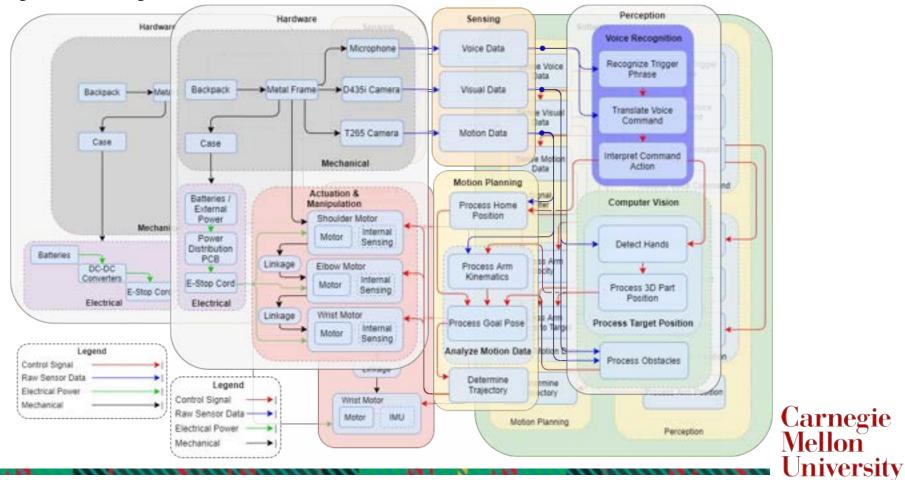

Input:

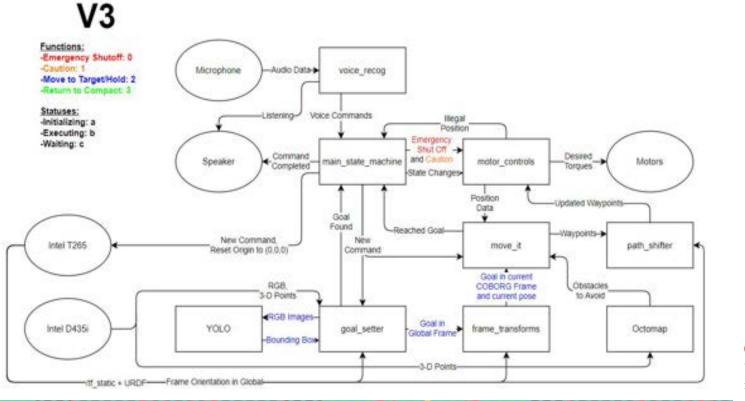
Sensing data (voice, depth camera)

Coborg System

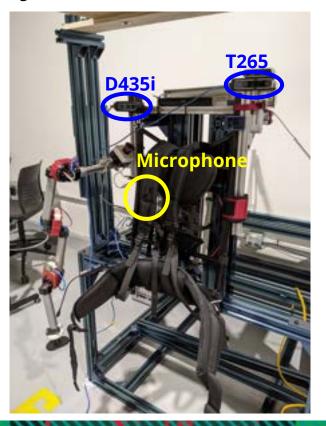
Sensing, Vision, Voice, Motion Planning, Actuated Manipulation

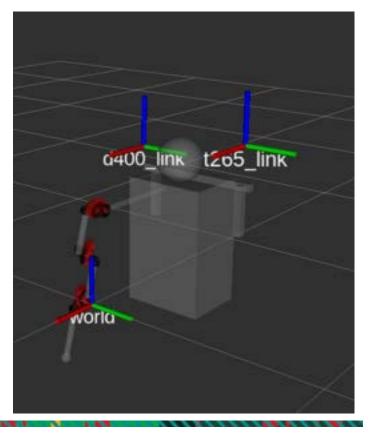





Functional Architecture

Cyber-Physical Architecture




Subsystem: Software Framework

Carnegie Mellon University

Subsystem: Hardware Framework

Carnegie Mellon University

Subsystem: Perception (Voice Recognition)

Input: Audio stream from Microphone

<u>Output:</u> Commands to the ROS framework main_state_machine Audio feedback to system speaker

Process:

- Recognize "COBORG" with PocketSphinx using a limited library
- Process following phrase with PocketSphinx using the full library
- Publish valid recognized commands to /voice_commands topic
- Play audio sound related to success/failure of command recognition

Carnegie

University

Mellon

Current Status: Perception (Voice Recognition)

Statistics

Number of Commands	150
Number of Successes	147
Number of False Positives	1
60%?	<1.303e-27
000/0	0.004
92%?	0.004

Method: Binomial Test

Sample Video

Carnegie Mellon University

SVD: Performance Evaluation

Targeted Requirements:

PM4.1 - Will be able to understand the voice command **60%** of the time.

PM4.2 - Will be able to understand at least **2 unique** voice commands, **up to 8**.

PM4.3 - Will be able to understand commands of at least **2 words** in length, **up to 8**.

PD2.1 - Speaker will alert user to state changes with an **80%** success rate.

NM9 - Audio feedback will be **clearly audible** in representative work environment.

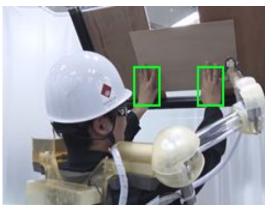
SVD Demo Video:

SVD results summary:

- (PM4.1) 100% command accuracy
- (PM4.2) Recognizes 5 unique phrases for 4 unique commands (2 phrases for stop)
- (PM4.3) Commands include 2-4 words in length
- (PD2.1) 100% accurate audio feedback
- (NM9) Audio feedback was clearly heard

Subsystem: Perception (Vision)

Input: Raw RGB image + point cloud

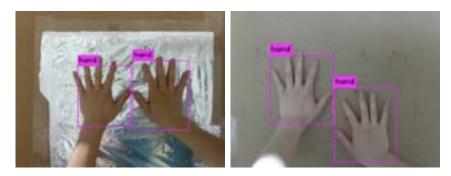

• D435i will outputs RGB raw image and also point cloud

Output: 3D target part position + part surface normal

Process:

- 2D YOLO v3 hand detection to extract 2D bounding box
- 3D hand bounding boxes using point cloud data
- Post-process to get averaged 3D position of hands
- Post-process to get surface normal of averaged target position
- Integrate each component into ROS

Hand Detection



Current Status: Perception (Vision)

- Vision subsystem development completed!
- Validated performance

Validation Results:

Distance Error		Surface Normal Angle Error	
Sample Size	36	Sample Size	36
Sample Mean (m)	0.042m	Sample Mean (deg)	4.4deg
0.305m (12")?	<1e-30	45 deg?	<1e-30
0.1524m (6")?	<1e-30	10 deg?	0.0086
0.059m?	0.0093	9 deg?	0.0308
0.056m?	0.034	Method: 2-tail z-scor	e

Class: Avg on 2 hands x: 0.576678 y: -0.0473136 z: -0.0196843 normal_x: 0.998124 normal_y: 0.024003 normal_z: -0.0563149

Angle difference between ground truth and measured normals: 3.50967 degrees Time: 1 seconds

SVD: Performance Evaluation

Targeted Requirements:

PM1.1 - Will have 60% accuracy of detecting indicated location within 6" in 3D space, and always within 12".

PM1.2 - Will detect intended object within 5 seconds of when the move command is issued.

PM1.3 - Shall detect the surface normal of the part with error no greater than 45°.

PD1.2 - Must be **invariant to part texture**, specifically matte finish and gloss finish.

SVD Demo Video:

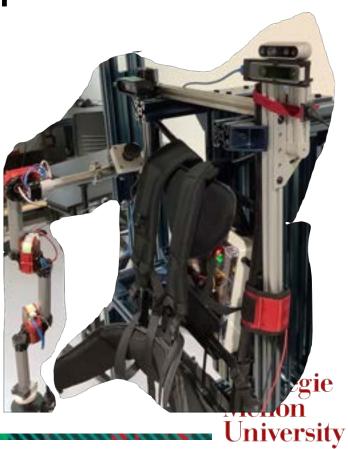
SVD results summary:

- (PD1.2) 2 surfaces: shiny, matte
- 10 positions tested in SVD
- (PM1.1) 100% accuracy (10 test cases) on detecting the indicated location
- (PM1.1) Averaged 3D distance error: 3.74cm
- (PM1.3) Averaged surface normal angle error: 4.17°
- (PM1.2) Averaged executing time: 1.3s Carnegie

Mellon

University

Subsystem: Actuated Manipulation


<u>Input:</u> Goal position from camera_link + obstacle mapping + frame transforms

- Vision subsystem outputted 3D position of hands
- D435i outputs depth point cloud that is converted to obstacles
- TF frame transforms between cameras and URDF frames

Output: Robot actuation to goal states

Process:

- Process 3D goal position relative to the camera_link
- Plan path from current state to goal state
- Execute path
- Execute force/torque control
- Calculate temporal transform in t265_odom_frame
- Execute compensation actuation
- (Release) Execute release and "go home"

Current Status: Actuated Manipulation Validation

u User Fring King Helper Jeacker Lord Fonda Start Time/End Time: Validation Test S-2: Actuation and Manipulation Subsystem Record Sheet Ground-Truth Position (cm) Compact Error Distance (in) Trial Position Distance (in) z x y 13.5 -34.5 -25.5 0.59 89.5 1 1 14 0.138 -25.5 89.5 -49.5 1 2 0.933 13.5 -40.5 -49.5 89.5 1 3 0.63 13.5 -25.5 -34.5 89.5 2 1 -25.5 -49.5 89.5 2 2 -40.5 89.5 -49.5 3 2

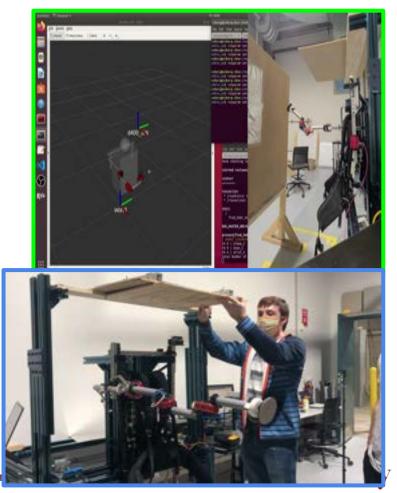
Weight Success?

Carnegie Mellon University

Date: 04/28/2021

SVD: Performance Evaluation

Targeted Requirements:


PM-2 - Will reach within **6**" of the planned target position **60%** of the time, and always **within 12**".

PM-6 - Will bring full robot arm to within **20**" of the point of attachment to the backpack.

PM-3.2 - Will be **able to hold** a representative part overhead.

SVD results summary:

- (PM-2) 3 predefined goal positions Averaged 3D position error: 0.574in
- (PM-6) Base-to-end measured at home position % requirement met at SVD: 100%
- (PM-3.2) ~3 lbs wooden board to hold overhead: successful

Overall System Status: SVD Encore Integration

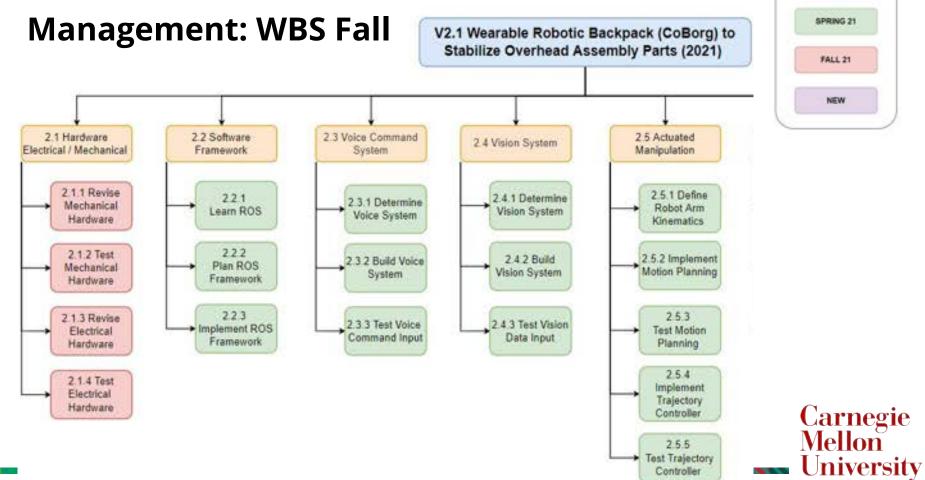
Carnegie Mellon University

Conclusions on SVD

Vision Subsystem:

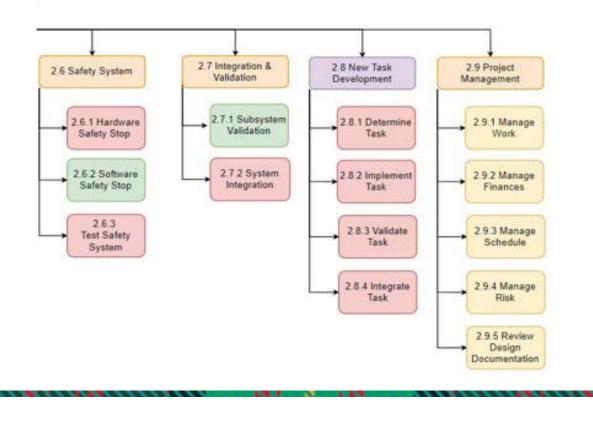
- **Strong points:** high detection accuracy, real-time detection, align with use cases
- Weak points: some false positives, color dependent, hand pose variant
- **Future work:** post-processing the pointcloud, filter out noises

Voice Subsystem:


- **Strong points:** high recognition accuracy, flexible command structure, low/no false positives, no false commands sent to main_state_machine
- Weak points: not robust to excessive variable background noise
- **Future work:** Expand command dictionary, simplify existing commands, optimize dictionary for improved recognition, add command timeout function

Actuated Manipulation Subsystem:

- Strong points: high position accuracy, no hard collision with user
- Weak points: inconsistent performance, slow performance, position-only actuation
- **Future work:** global-frame stabilization, increase DoF to solve full pose, collision avoidance, perform multiple simple tasks

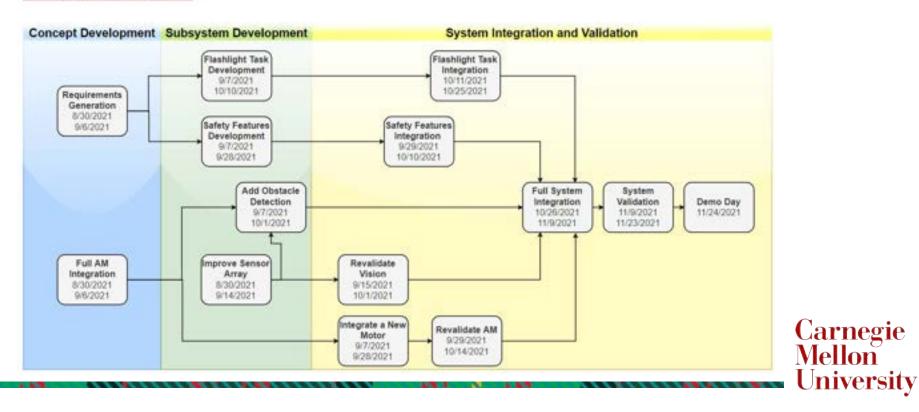

Carnegie

Velloñ

LEGEND

Management: WBS Fall

LEGEND SPRING 21 FALL 21 NEW


> Carnegie Mellon

University

27

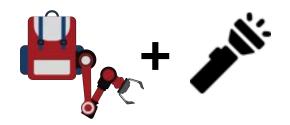
Management: Fall Schedule

Fall Schedule V2

Management: Progress Reviews

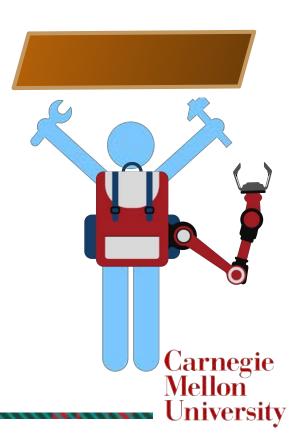
Milestone	Description	
PR 7: Early September	Requirements generation Full Actuated Manipulation Integration	
PR 8: Mid-September	Improved Sensor Array	-
PR 9: Early October	Revalidate Vision System Safety Features Development Add Obstacle Detection Integrate New Motor	-
PR 10: Mid-October	Safety Features Integration Flashlight Task Development Revalidate Actuated Manipulation	
PR 11: Mid-November	Flashlight Task Integration Full System Integration	Carnegie Mellon
PR 12: Late November	System Validation	- University

Management: FVD Overview


- Validation of Flashlight Function
- Full Use Case Test
- Nonfunctional and Safety Test

 Location: Newell Simon Hall -B512

FVD - Validation of Flashlight Function


Proposed Functionality	Proposed Test Plan
Automatically point a flashlight at the work surface while the user is working	Ensure that the coborg will point a flashlight at the target position within the pose requirements currently set

Carnegie Mellon University

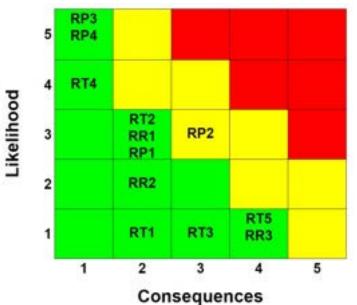
FVD - Full Overhead Use Case

Functionality	Test Plan
All of the previously listed requirements	By nature of successful use case, record times, etc.
PM3.1: Will maintain the target location with ≤ 6" of error	By nature of successful use case
PM5: Will release the object within 5 seconds of command issue	Time Process
NM4, NM5, NM8, ND1: Will be safe, simple, portable	By nature of successful use case and product (estop, torque limits, etc.)
NM6: Battery life ≥ 20 minutes	By nature of successful use case
NM7: Part Invariant	By nature of product

https://tinyurl.com/45tujufu https://tinyurl.com/249dv6m3

FVD: Nonfunctional and Safety

Functionality	Test Plan
NM1: Will be ergonomic and comfortable to wear	By qualitative assessment and by nature of base frame
NM2: Will weigh less than 40 lbs.	Indirect weight measurement
NM4: Robot will operate safely	TBD



Carnegie Mellon University

33

Management: Risk

Risks	Title
'T' = Technical,	'R' = Resource, 'P' = Programmatic
RT1	Hebi motor module dies
RT2	Main computer dies or does not perform per our requirements
RT3	Estop devices malfunction
RT4	TCP/IP connectivity is lost
RT5	Salus Robot disinfects CoBorg with a generous coat of liquid
RR1	Team lacks ROS fundamentals by start of spring semester
RR2	Unable to work 10hrs/week/member on MRSD project
RR3	Hazard occurs on user while wearing robot
RP1	Member contracts COVID-19
RP2	MRSD program gets disrupted due to COVID 19 pandemic
RP3	Our sponsor graduates in the spring of 2020
RP4	End Effector Breaks

Level	Likelihood	Consequences
5	100%	1 Month/\$2,000/Injury
4	80%	2 Weeks/\$1,000
3	60%	1 Week/\$500/Loss of function
2	40%	3 Days/\$200
1	20%	1 Day/\$50
		University

Management: Risk

Management: Current Budget

No.	Part Name	Cost	
1	Voice Subsystem Parts	\$34.98	
2	Robot Hardware	\$119.71	
3	Supplementary Items	\$501.61	
4	Intel Realsense T265	\$199.99	
5	Computer Parts	\$152.46	
6	Nvidia Jetson Xavier AGX	\$699.99	
Total Costs		-\$1708.74	
udget Remaining		+\$3291.21	Carnegie Mellon
			University

Management: Projected Fall Expenditures

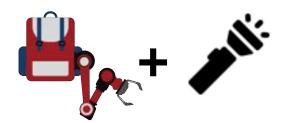
No.	Part Name	Cost
1	Fiberglass Shell Assembly	\$400.00
2	Laser Cut Acrylic Base	\$200.00
3	Carbon Fiber Tubing	\$125.00
4	Electrical Components	\$300.00
5	T-Slotted Aluminium Assembly	\$500.00
Total Costs		-\$1525.00
Budget Remaining		+\$1766.21

Carnegie Mellon

University

Conclusions

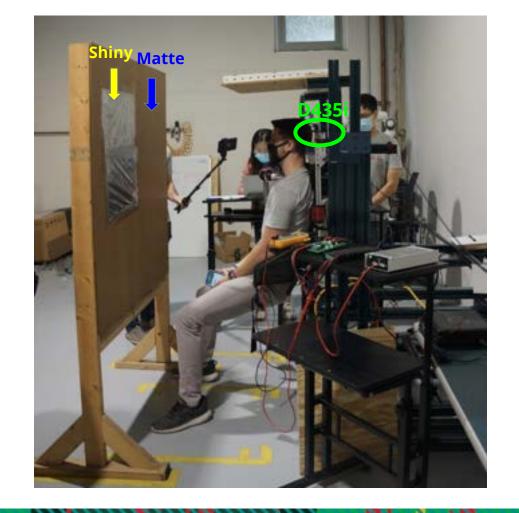
Lessons from Spring



Time management is critical

Document early and often

Plans for Fall



Questions?

Biorobotics Laboratory

