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Abstract
The COBORG system is a robotic backpack aimed at helping manufacturing workers hold

and secure parts overhead. It accomplishes this goal by receiving voice commands from the user
and identifying the target location with a vision system that tracks the user’s hands. The vision
system also provides localization for the robot so that the actuated manipulation system can bring
the end-effector to the location identified by the user’s hands, regardless of the user’s shifting
during the COBORG’s operation. Currently, the three primary systems (vision, voice, and
actuated manipulation) have been implemented and validated according to their respective
requirements. The state machine that connects them has also been implemented, alongside a
rudimentary version of the fully automated system that can function but lacks the key features of
localization, stabilization, and reasoning. Future work for the COBORG backpack includes full
integration of the current system with intelligent actuated manipulation, validation of the said
system, the addition of collision detection, an extra motor for the arm, an aesthetic overhaul, and
an added functionality.
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1. Project Description
Automotive and airplane manufacturing can often cause strain to the operator's arms after

working for long periods of time, and the operator often requires a second person to assist them
as they work [1] [2]. Specifically, the attachment of under-wing panels requires two individuals,
one to hold the panel, and the other to attach it. A robotic backpack system could hold the panel
for its wearer, allowing the operator to use their hands to secure the part. This Collaborative
Cyborg Backpack Platform (COBORG) would allow a single individual to accomplish the entire
task by themselves, and alleviate the stress and strain-induced throughout the workday. To
accomplish this operational objective, the COBORG would have to be simple, accurate, and
hands-free.

2. Use Case
2.1. Narrative

Jason works on the assembly of airplane wings at Boeing. When he gets to work he checks
his to-do list and sees that his list is topped with a series of tricky assemblies. Knowing that he
will require aid shortly, he walks over to the COBORG backpack arm station and signs out one
of the units. Picking the unit up from its charging station, he straps the backpack on, adjusting
the straps for comfort, and heads over to the plane he will be working on today. After completing
some remedial tasks he is ready to move on to the trickier cases where he will require the arm’s
help. He switches on the backpack arm, which has been in a compact position and not using
energy up until this point. Jason grabs the part he requires assistance with and holds it up over
his head, fitting it into place (see Figure 1[A]). When the part is stabilized, he says, “COBORG,
hold it,” and the COBORG backpack arm detects his hands in 3D space and moves the robot arm
to a position where it can push on the part and stabilize it (see Figure 1[B]). Jason lowers one of
his arms from the part, now that the COBORG backpack arm is holding it, and uses a drill with
his free hand to screw the part into place (see Figure 1[C]). While Jason’s body shifts its
position, the COBORG backpack arm adjusts to maintain the position of the end effector in 3D
space, supporting the part regardless of Jason’s position within the limits of the arm, with 5
degrees of freedom. Now that the part is fastened, Jason says, “COBORG, return home.” The
COBORG backpack arm returns to its compact position and goes into sleep mode, awaiting
further instruction with minimal power usage.

Jason finds the next part for the next task and uses the backpack arm to help him secure it as
well. After completing a series of similar tasks, Jason comes to a panel he will have to connect
located in a dark area of the interior. Jason quickly switches the end effector of the COBORG
backpack arm from the support paddle to the gripper, handily attached to the side of the
backpack. He then locks his flashlight into the gripper, moves the arm into place so that he can
see the necessary location, and says, “COBORG, stay.” The COBORG robot arm maintains its
position and orientation in 3D space while Jason moves around, reaching for the panel he can
now see and finishes his task. He then says, “COBORG, return home,” removes the flashlight
from the gripper, and switches back to the support paddle for his next series of tasks. After
completing all of his tricky tasks for the day, Jason returns the COBORG backpack arm to its
charging station and signs it back in. While Jason completes the rest of his work for the day, the
COBORG backpack arm charges, awaiting its next user.
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2.2. Graphical Representation

[A] Human Holding Part [B] Combined Support

[C] COBORG Hands-Free Support

Figure 1 - Graphical Representations of Use Case

3. System-level Requirements
Mandatory and desired performance and non-functional requirements are organized into

their respective subsystems and shown in the subsections below. System-level requirements that
do not pertain to more than one or all subsystems can be found in Table 1 below. Vision
subsystem requirements can be found in Table 2 below. Voice subsystem requirements can be
found in Table 3 below. Actuated manipulation subsystem requirement can be found in Table 4
below. Hardware, electrical, and sensor frameworks are conglomerate into one subsystem for the
purpose of this requirements section and can be found in Table 5 below.

3.1. System-level Requirements
Table 1 - Hardware, Electrical, and Sensor Subsystem Requirements

ID Requirement
N.M.4 Will operate safely.

N.M.5 Will be simple to operate.

N.M.6 Will be able to perform untethered for 20 minutes.

N.M.7 Will require minimal part modification to assist with assigned tasks.

N.M.8 Will be operable on a portable computer.

N.D.1 Will be able to operate standalone (no WiFi).
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3.2. Vision Subsystem Requirements
Table 2 - Vision Subsystem Requirements (Changes Highlighted in Yellow)

ID Requirement

P.M.1.1 (Detect indicated parts) Will have 60% accuracy of detecting indicated location within 6" in 3D space, and
always within 12".

P.M.1.2 (Calculate object) Will detect the intended object within 5 seconds of when the move command is issued.

P.M.1.3 (Pose Detection) Shall detect the surface normal of the part with an error no greater than 45°.

P.D.1.2 (Texture Invariant) Must be invariant to part texture, specifically matte finish and gloss finish.

The only requirement from the vision subsystem that changed between the PDR and CDR
was P.M.1.1. The addition of “always within 12” was added to place a worst-case maximum
boundary on the acceptable error from the system.

3.3. Voice Subsystem Requirements
Table 3 - Voice Subsystem Requirements (Changes Highlighted in Yellow)

ID Requirement
P.M.4.1 (Voice command) Will be able to understand the voice command 60% of the time.

P.M.4.2 (Voice command) Will be able to understand at least 2 unique voice commands, up to 8.

P.M.4.3 (Voice command) Will be able to understand commands of at least 2 words in length, up to 8.

P.D.2.1 Speaker will alert the user to state changes with an 80% success rate.

N.M.9 Audio feedback will be clearly audible in a representative work environment.

The only requirements from the voice subsystem that were added between the PDR and CDR
were P.D.2.1 and N.M.9. These requirements were added after it was realized that the user would
require audio feedback to interact with the voice subsystem properly. Therefore, a speaker, along
with relevant requirements, was added to the project.

3.4. Actuated Manipulation Subsystem Requirements
Table 4 - Actuated Manipulation Subsystem Requirements (Changes Highlighted in Yellow)

ID Requirement
P.M.2 (Move to object) Will reach within 6 in of the planned target position 60% of the time, and always within 12 in.

P.M.3.1 (Hold object) Will maintain the target's spatial position with less than 6 in of error margin.

P.M.3.2 (Hold object) Will be able to hold a representative part overhead.

P.M.5 (Release object) Will release object within 5 seconds of when the release command is issued.

P.M.6 (Compact arms) Will bring the full robot arm to within 20" of the point of attachment to the backpack.
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The only requirements from the actuated manipulation subsystem that changed between the
PDR and CDR were P.M.2 and P.M.3.2. The addition of “and always within 12 in.” was added to
P.M.2 to place a worst-case maximum boundary on the acceptable error from the system. We
found 12” to be a good approximation of the distance between the user’s shoulder blades, and is
the usual distance between the user’s hands as they are holding the part. P.M.3.2 was changed
from an abstract strength test (hold 2 lbs. at full extension) to something more relevant to the
COBORG’s use case.

3.5. Hardware, Electrical, and Sensor Subsystem Requirements
Table 5 - Hardware, Electrical, and Sensor Subsystem Requirements

ID Requirement
N.M.1 Will be ergonomic for spinal comfort. Will be comfortable to wear for 30 consecutive minutes.

N.M.2 Will weigh less than 40 pounds.

N.M.3 Will be aesthetically pleasing.

4. Functional Architecture

Figure 2 - Functional Architecture of COBORG System

The Functional Architecture shown in Figure 2 outlines the major functions of our system
and the data flow between the subsystems. It contains three aspects: the input data, the output,
and the four major subsystems. The input data comes from the hardware sensors on the
COBORG system. Our system will interpret the data and generate a manipulation output through
the robot arm. The details for each subsystem are introduced in the following paragraphs.

The System Inputs, as listed on the left side in Figure 2, are the data coming from the
hardware (sensors) on the COBORG. Specifically, our system takes three kinds of input data:
voice command, visual data, and robot motion. The voice commands from the user are captured
by the microphone on the robot backpack. The visual input is used to localize the target object
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from the depth camera on the COBORG backpack. The motion data is another input that our
system will use to analyze the robot arm motion and plan for trajectory.

The Hardware and Sensing Subsystem is responsible for capturing the inputs. This subsystem
will keep track of the sensor data during system operation. Depending on the voice command
(i.e. “Go here”, “Come back”), it will trigger the following subsystem processes. The video
stream and the point cloud information will be fed into the Perception Subsystem and the motion
data will be used in the later Motion Planning Subsystem.

The Perception Subsystem receives sensing data from the Sensing Subsystem, specifically
the visual data. After the system interprets the voice command from the Sensing Subsystem,
based on the voice command content, the system will detect the desired target (part) position
using the visual data and retrieve the robot arm motion data to execute Motion Planning
Subsystem.

The Motion Planning Subsystem will use the motion data and the target position information
to determine the trajectory for the robot arm. The data will first come into the “Analyze Motion
Data” block to generate possible path plans. The determined trajectory from multiple path plans
will be forwarded to the Actuation and Manipulation Subsystem.

The Arm Actuation and Manipulation Subsystem receives the trajectory as the input, and by
controlling the robot arm, COBORG will follow the trajectory, move to the desired position, and
stabilize the object overhead. Once the voice command trigger is received again (i.e. “Come
Back”), the robot arm shall release the object and move back to the compact position, which is
the system's final output.
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5. Cyberphysical Architecture

Figure 3 - Cyberphysical Architecture

The Cyberphysical Architecture shown in Figure 3 illustrates the interaction between the
hardware actuation and the perception layer of the COBORG system. This elaborates on the
general functionality of the COBORG described in the Functional Architecture in Figure 2 to
detail how this functionality is communicated between the subsystems and physical components.

The perception layer reads information about the system state and other environmental data
through the sensing block in the form of voice, vision, and motion data read from the
microphone, D435i depth camera, and the T265 tracking camera respectively. The voice data is
used in the voice recognition system to identify the keyword “COBORG” and interprets the
phrase following the keyword to identify command actions. If the recognized command is to
move to the target, then the vision system is triggered to detect the hands, process the 3D
position of the part based on the hand positions, then feed that target position to the motion
planning system. If the recognized command is to move the target to the home position, then the
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motion planning system is directly triggered to compact the arm. The motion planning system is
also fed obstacle information from the vision system for obstacle avoidance in actuation.

The hardware components are controlled by the perception layer through the motion planning
system. The COBORG arm has three HEBI motors in the form of a shoulder, elbow, and wrist
joint stemming from outside the user’s right arm. This, along with the rest of the hardware frame
and components, is represented in the COBORG’s Unified Robot Description Format (URDF).
Using this URDF, these motors are actuated using a trajectory planned by the motion planning
system. This trajectory is generated by planning from the arm’s current position to the desired
goal position, whether that be the home position or some target pose. This planned path will also
avoid obstacles detected by the vision system.

The remainder of the hardware section describes the linkages between the motors, the
physical connectivity of the sensors used, and the electrical system. The electrical system is
described later as the COBORG custom power distribution PCB.

6. Current System Status
6.1. Spring-Semester Targeted System Requirements

The focus during the spring semester was on completing the development of the three basic
subsystems and fully validating their requirements. The targeted requirements for the vision
subsystem can be found in Table 6 below. The targeted requirements for the voice subsystem can
be found in Table 7 below. The targeted requirements for the actuated manipulation subsystem
can be found in Table 8 below. The targeted requirements for the hardware subsystem can be
found in Table 9 below.

Table 6 - Targeted Vision Subsystem Requirements

ID Requirement

P.M.1.1 (Detect indicated parts) Will have 60% accuracy of detecting indicated location within 6" in 3D space, and
always within 12".

P.M.1.2 (Calculate object) Will detect the intended object within 5 seconds of when the move command is issued.

P.M.1.3 (Pose Detection) Shall detect the surface normal of the part with an error no greater than 45°.

P.D.1.2 (Texture Invariant) Must be invariant to part texture, specifically matte finish and gloss finish.

Table 7 - Targeted Voice Subsystem Requirements

ID Requirement
P.M.4.1 (Voice command) Will be able to understand the voice command 60% of the time.

P.M.4.2 (Voice command) Will be able to understand at least 2 unique voice commands, up to 8.

P.M.4.3 (Voice command) Will be able to understand commands of at least 2 words in length, up to 8.

P.D.2.1 Speaker will alert the user to state changes with an 80% success rate.

N.M.9 Audio feedback will be clearly audible in a representative work environment.
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Table 8 - Targeted Actuated Manipulation Subsystem Requirements

ID Requirement
P.M.2 (Move to object) Will reach within 6 in of the planned target position 60% of the time, and always within 12 in.

P.M.3.2 (Hold object) Will be able to hold a representative part overhead.

P.M.6 (Compact arms) Will bring the full robot arm to within 20" of the point of attachment to the backpack.

Table 9  - Targeted Hardware Subsystem Requirements

ID Requirement
N.M.1 Will be ergonomic for spinal comfort. Will be comfortable to wear for 30 consecutive minutes.

N.M.2 Will weigh less than 40 lbs.

6.2. Overall System Depiction
COBORG is a collaborative robot arm that can help people hold objects overhead. The inputs

to the system come from the user’s voice, which triggers the system to start moving to the target
and stabilize it in place. To achieve this goal, our system consists of several subsystems,
including hardware framework, electrical framework, sensing, perception, motion planning, and
actuated manipulation. The current status of the overall system is depicted in Figure 4 below. In
the Spring semester, we completed the subsystem development on the current hardware
framework and validated their performance separately. By the end of the SVD encore, we also
did the initial subsystem integration on the current hardware framework. The PCB board shown
in Figure 4 is also used in the current system as part of the electrical framework.

Figure 4 - Overall Depiction of COBORG (left) and the PCB (right)
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6.3. Subsystem Descriptions/Depictions
6.3.1. Hardware Framework

The Hardware Framework of the COBORG is broken down into three subcomponents:
● Frame
● Case
● Manipulator Arm

The frame consists of the structural foundation of the robot that is mounted to the user. This
includes the backpack that the user is wearing as well as the structural metal frame attached to
the backpack straps. The manipulator arm and the case are structurally secured to the frame. See
Figure 5 (A) for pictures of the as-built frame.

The manipulator arm is installed to the frame and serves as the mobile unit of the robot. This
includes the aluminum linkages, motors, and end effector. See Figure 5 (B) for pictures of the
as-built manipulator arm.

The case is the container box that houses all head-end equipment to the robot. A majority of
the electrical framework components are housed in the case. Access holes are installed on the
exterior of the case such that the wiring can safely travel into and out of the case. See Figure 5
(C) for pictures of the as-built case.

(A) Front View                            (B) Side View                        (C) Rear View

Figure 5 - As-Built COBORG Framework
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6.3.2. Electrical Framework

Figure 6 - COBORG Power Distribution PCB Schematic

The COBORG system can be powered by either an external 36VDC power source (i.e.
wall outlet) or by the onboard 36VDC battery packs. Power is then distributed to the motors,
computer, and router/5V logic via the COBORG Power Distribution Printed Circuit Board (PD
PCB), shown in Figure 7 and schematic shown in Figure 6. This PD PCB prioritizes power from
the external power source over the battery. The internal batteries are always plugged into the
system, but when the external power is connected, the logic on the PCB switches the power
sourcing to draw the full 3-10A (~100-400W) from the external supply and only draw ~10mA
(~0.4W) of current from the battery. This allows the battery to maintain charge and also keeps
the batteries in a state of minimal discharge to allow for safer charging; charging which will also
source from the external power. This 36VDC input directly powers the COBORG arm motors at
the recommended 36VDC. The PCB has two switching voltage regulators to convert the input
36VDC to 19VDC and 5VDC for the computer and router/5V logic respectively. The 5VDC
power is achieved by feeding the 36VDC into a “18VDC-75DC to 5VDC” converter
(UWS-5/10-Q48P-C). The 19VDC power is achieved by feeding the 36VDC into a variable
power supply that accepts 18VDC-85VDC and outputs a voltage related to the trim resistor

connected to the PCB. Based on the equation given on the datasheet, , with a𝑅
𝑡𝑟𝑖𝑚

=
700−10*𝑉

𝑜𝑢𝑡

𝑉
𝑜𝑢𝑡
−4

desired ≤ 19VDC, a 37kΩ resistor was selected, which due to tolerances on both the resistor𝑉
𝑜𝑢𝑡

and the regulator put the output voltage to ~18.7VDC.
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Figure 7 - COBORG Power Distribution PCB w/ Both Power Sources Plugged in

6.3.3. Sensors
The following sensors are used on the COBORG:

● Intel Realsense D435i depth camera (1)
● Intel Realsense T265 tracking camera (1)
● IMU sensor (internal to each HEBI motor) (3)
● Microphone (1)

The Realsense cameras and microphone are currently mounted onto the frame and close to
the user’s shoulder(s). The D435i depth camera is mounted on the user’s right shoulder, which
has a better view of the user’s hands and robot arm. The T265 tracking camera is mounted on the
user’s left shoulder. By defining the translation between these two camera frames, the robot arm
shall follow the hand movement shown in the depth camera. IMU sensors exist internally in each
of the three HEBI motor models being used on the COBORG. Figure 8 demonstrates the position
of these sensors.
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Figure 8 - Sensor Positions

6.3.4. Perception: Vision
The vision subsystem aims to determine the 3D target part position and surface normal by

utilizing a hand detection algorithm combined with point cloud information. Intuitively, the hand
position could be inferred as the goal position of the target since users always want to put their
hands on the target to hold it overhead. By localizing the hand position on the part, the part goal
position can be easily retrieved. For the spring semester, the vision system will implement 2D
hand detection, 3D bounding box extraction, and post-processing which includes the goal
position calculation and surface normal estimation.

The vision subsystem uses the 2D hand detection algorithm to localize the hand in the
camera frame. The current choice for the hand detection algorithm is the open-source algorithm
YOLO v3 (You Only Look Once) [3]. YOLO is a popular neural network-based method that is
commonly used in detection tasks. The network already has a custom implementation on hands
detection, which is trained on two large hand datasets and shows great precision results on the
validation set. The pretrained model is also interfaced with ROS by cooperating with another
open-source ROS wrapper built for YOLO. An example of hand detection results combining
with ROS is shown in Figure 9.

Figure 9 - Sample Outputs for 2D Hand Detection Results
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Once the 2D bounding boxes are retrieved, the system will start looking for the point cloud
information from the depth camera (D435i) to draw the 3D bounding boxes. In detail, within
each 2D hand bounding box, the system looks for the minimum depth and maximum depth from
the point cloud and uses that range of the depth to draw the 3D bounding boxes around the
hands. The size of the 3D bounding boxes remains the same as the 2D bounding boxes except
extra depth information is provided. This estimation process is applied to every 2D hand
bounding box outputted from the previous step.

To localize the target and obtain the surface normal, our system further does post-processing
on those 3D bounding boxes. In detail, the system first takes the average of the 3D bounding
boxes' center positions as the goal position. If there is a single hand in the frame, the center
position of the hand will be set as the goal position. If multiple hands show in the frame, the
average of the hand positions will be indicated as the goal position. After obtaining the goal
position of the target, it further searches the nearby points around the goal position to estimate
the surface normal for the target board. The 3D goal position and surface normal will be used in
the later motion planning system and stabilization task.

To ensure the communication between different subsystems, all of the processes discussed
above are currently implemented within ROS. By using ROS publishers and subscribers, the data
could be easily transferred between different processes. A sample output from the ROS topic is
shown in Figure 10, which summarizes the 3D target position(i.e. x, y, z) and also the surface
normal vector (i.e. normal_x, normal_y, normal_z). It also outputs the overall execution time for
the vision system, which will be compared with the requirement in the later validation testing.

Figure 10 - Final Output from ROS Topic

6.3.5. Perception: Voice
The voice recognition subsystem serves as the interface between the user and the

COBORG for the user’s desired functionality. The voice recognition system uses the open-source
PocketSphinx platform for its optimal recognition for fully offline/untethered functionality. For
implementation on the COBORG system, the dictionary was optimized to recognize commands
and the word “COBORG” because COBORG is not in the standard English dictionary. To
improve recognition, the given model was trained on the new dictionary for roughly a day to
optimize the model for the optimized dictionary. The input for the voice recognition system is the
audio stream from the microphone mounted on the COBORG backpack strap. The audio output
is the speaker mounted on the COBORG. The input audio is processed using pyaudio and the
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output is served to the speaker as mp3 files using pydub built on pyaudio. The voice recognition
system is built on the voice_recog ROS node, which once a valid command from the user is
recognized, publishes the command code to the /voice_commands ROS topic. From here, the
main_state_machine subscribes to this topic to process the voice command and dictate to the
other subsystems the commanded function.

The user triggers the command recognition by saying the keyword “COBORG”. Once
“COBORG” is recognized, the COBORG plays a short jingle to alert the user that it is now
listening for a command. From here, the user can command the robot to move to the part target
established by the aforementioned vision perception algorithm by saying “Go Here”. Once the
user has secured the part, the command “Come Back” will bring the COBORG off the target part
and back to the compact home position. After the keyword is said and either of these commands
is recognized, the COBORG plays a short positive success jingle to confirm that the command
was successfully interpreted. Additionally, the user can trigger the command prompt with
“COBORG” and say the command “Stop” to trigger the soft emergency stop function.
Alternatively, the user can say “Stop Stop Stop” without preceding with the “COBORG” trigger
for a more easily accessible and natural command to emergency stop the COBORG’s current
function. Once either of these e-stop commands is recognized, the COBORG plays a jarring alert
sound. If the “COBORG” keyword is recognized but the voice system does not recognize any
valid commands in the following phrase, it will play a negative failure jingle to alert the user that
no command was detected and therefore the COBORG will not act.

6.3.6. Actuated Manipulation
The actuated manipulation subsystem stands at the end of the pipeline, providing the

physical actuation and force output needed to aid the user in their intended task. This subsystem
is merely a husk, carrying out a task set forth by the previous subsystems. The intention is
derived from the output of the voice subsystem. Directed precision and aim are derived from the
output of the vision subsystem. Similar to how a human’s muscles need a brain to be
commanded, the COBORG’s manipulator arm needs visual and auditory perception to be
commanded intelligently. In other words, given the high-level goal command interpreted by the
voice subsystem and main state machine as well as the end goal pose from the vision subsystem,
the actuated manipulation system will actuate its various joints to move the end effector from its
current standby state to the end-goal state within a reasonable amount of time and through a
viable pathway that is minimally intrusive to the user and its environment.

As of the end of the spring semester, the current state of the actuated manipulation system
was centered around the aforementioned primary use case: to provide force and support to a
panel between a user’s two hands either forward or overhead. Figure 11 below displays the
physical build of the robot at its predefined standby state (i.e. home or compact position). The
manipulator arm is a serial linkage system with three revolute joints with a flat pad installed on a
spherical joint at the end of the arm, serving as the end effector. Each revolute joint is installed at
a specific angle relative to the principal axes of the environment and between each other. The
entirety of the arm is situated on the right side of the user, somewhere between the top of their
shoulder and their elbow joint, depending on the height and build of the user. The linkages
connected to each revolute joint are thin-walled steel tubes. The revolute joints are HEBI
X-Series actuator motors and the mounting brackets between the joints and linkages were also
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made by HEBI. Data and power are serially connected between motors where the linkages serve
as the conduit between motors. From the proximal to the distal motor, the names of the motors
are as follows: base motor, elbow motor, and wrist motor. Figure 11 below displays the build of
the manipulator arm as well as the rest of the hardware frame.

Figure 11 - Manufactured State of COBORG, Mounted onto Testing Frame

At the standby state of the actuated manipulation subsystem, the manipulator arm is in its
compact/home position as shown in Figure 11 above. As of this spring semester, the primary
high-level action to perform is for the end effector to push onto a part that is situated within
reach of the manipulator arm and in front of the user. The goal state is located somewhere on the
surface of the part and between the two hands of the user (assuming that the user is using two
hands to support the part while giving the push command and both the hands are in view of the
depth camera used by the vision subsystem). As of this spring semester, the goal state that the
manipulator arm is processing is the goal position output from the vision subsystem. To get the
goal state from the vision subsystem, the actuated manipulation subsystem first subscribes to the
/goal rostopic, and waits a short amount of time before extracting one message. That extracted
goal state is then transformed from the camera_link frame to the world frame of the robot URDF,
a frame at which the actuated manipulation subsystem uses.

After picking up the goal state from the vision subsystem, the robot arm will first actuate
to its ready position which consists primarily of rotation of the base and elbow motors such that
the end effector pad is orientated outward and in the direction the user is facing. This
intermediate position was implemented to prevent the manipulator arm from reaching an
undesirable orientation while actuating to the goal state. The next intermediate position is at a
position that is an X-offset away from the goal position. This position was employed to
encourage final X-axis directional push forces that are perpendicular to the surface of the board
in front of the robot, though this is considered an optional intermediate position for the
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manipulator arm. Should the actuated manipulation subsystem be unable to solve for this
intermediate position within a set amount of time, the next state is the goal state. Once the end
effector reaches the arm, the actuated manipulation subsystem waits for the next command which
is the “Go Home” command.

Figure 12 - Actuated Manipulation Push Out Process Screenshots: compact/home position (top left),
ready pose (top right), X-offset to push out (bottom left), final goal position (bottom right)

To pull back from the goal state and actuate the manipulator arm to its home position, the
robot arm first goes to the intermediate position that is a set X-offset away from the goal state.
This is an optional position that, if the subsystem is unable to solve for a viable path within a set
amount of time, the next goal state is the ready position of the robot arm. After reaching the
ready state, the robot arm goes to its compact/home position and waits on standby for the next
command to be issued. In essence, the robot arm will pass through the same intermediate points
that it went through to get to the goal position.
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6.4. Modeling, Analysis, and Testing
6.4.1. Vision Subsystem Validation

Before SVD, the vision subsystem performance is evaluated in below experiment setup. To
easily measure the ground truth and the prediction value, we fixed the COBORG on a frame. The
depth camera is on the left shoulder pointing straight to the board. To validate the consistency of
the performance, 10 predefined positions on two different part textures (i.e. shiny, matte) are
prepared on the board to test. Figure 13 shows the experiment setting for vision system
validation testing. These 10 predefined positions cover different moving directions of hands and
different distances between two hands. The testing is then repeated four times to validate the
system consistency and essentially collect 36 valid measurements. Table 10 below shows the
summary results from the testing.

Figure 13 - Vision System Validation Setup

To summarize the results, the system performs well in all the testing cases and meets our
requirements for the vision system. The averaged euclidean distance error is about 4 cm (1.57
in.) compared to the ground truth value. As our requirement mentioned, the euclidean distance
error shall be within 6 inches (see more details in section 3). Our validation performance meets
the requirement and remains a large buffer for our system. Also, the surface normal angle error is
about 4.4 degrees compared to the true angle, which is also much less than 45 degrees mentioned
in the requirement.
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Table 10 - Vision System Validation Results Summary

Distance Error Surface Normal Angle Error

Sample Size 36 Sample Size 36

Sample Mean (m) 0.042m Sample Mean (deg) 4.4deg

0.305m (12”) <1e-30 45 deg <1e-30

0.1524m (6”) <1e-30 10 deg 0.0086

0.059m 0.0093 9 deg 0.0308

0.056m 0.034

6.4.2. Voice Subsystem Validation
The results in Table 11 are from an isolated validation test with the microphone mounted on

the COBORG using Gerald’s voice for the test. 150 voice commands were tested including the
command to go to the user’s goal target, the command to compact to the arm, and the emergency
stop command. A successful output was defined as an accurate recognition of the intended
command in at most 2 tries. This criterion was defined based on irritation, if a command takes
more than 2 tries to recognize then it irritates the user and defeats the purpose of convenience of
voice control. After each trial of three commands, a randomly generated sentence of at least 20
words was read to test if the voice system would detect the keyword “COBORG” trigger in
random speech. The goal of this test is to validate the 60% recognition accuracy dictated by
requirement P.M.4.1.

Table 11 details the results from the validation test. Based on the two chances for successful
command recognition, 147 out of 150 commands were successful with 1 false-positive keyword
trigger from random sentences. Table 11 also details the results of a binomial test which confirms
that the probability of getting 60% accuracy is ~100% (1-1.303e-27). The results elaborate to
express that the chance of having at least a 94% command accuracy is 97% (1-0.0302).
Additionally, considering a single missed command as a failure using the same test trials, the
system successfully recognized 131 out of 150 commands with 1 false-positive trigger. Even
with these stricter qualifications, the probability of getting 60% accuracy based on the binomial
test is ~100% (1-3.99e-13), and getting 94% accuracy is around 95% (1-0.0427). This clearly
expresses the validation of requirement P.M.4.1.

The other voice system requirements are validated implicitly. P.M.4.2 requiring at least 2
unique voice commands is satisfied because there are currently 5 unique voice commands for 4
unique actions (2 commands for emergency stop, one inside the keyword trigger structure and
one independent). P.M.4.3. requiring commands of at least 2 words in length is satisfied by all
recognized commands currently being 2-4 words in length. P.D.2.1 requiring the system speaker
to alert the user to state changes with an 80% success rate is satisfied because the code structure
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ties together the audio feedback code and the /voice_command ROS topic publishing code so
that it works with 100% accuracy. N.M.9 requiring that the audio feedback be clearly audible is
satisfied by the design, placement, and volume of the system speaker.

Table 11 - Voice System Validation Results Summary

Conditions of 2 Attempts for
Successful Recognition

Conditions of 1 Attempt for
Successful Recognition

Number of Commands 150 Number of Commands 150

Number of Successes 147 Number of Successes 131

Number of False
Positives

1 Number of False
Positives

1

60%? <1.303e-27 60%? <3.99e-13

92%? 0.004 92%? 0.0089

94%? 0.030 94%? 0.043

6.4.3. Actuated Manipulation Validation
Before SVD, the actuated manipulation subsystem was tested on 3 pre-measured positions on

a vertical board directly in front of the robot arm distanced about 90 centimeters away from the
robot frame. Each of the 3 pre-measured positions was tested a total of 6 times. The robot arm
was commanded to go to these goal positions from the compact/home position. The robot arm
was allowed to pass through two intermediate positions between the compact/home positions and
the goal position. When the robot arm reached the goal position, a tape measure was used to
measure the error distance between the ground truth pre-measured point and the landed position
of the end effector on the board. The end effector has to be firmly pressed onto the board. The
robot arm was when commanded to go back to the compact/home positions. The robot arm
passed through the same two intermediate positions before reaching the compact/home position.
Once the robot arm reached the position, a measurement was taken with a tape measure between
the base motor and the end effector tip of the robot arm.

Figure 14 below shows the 3 pre-measured goal positions that were tested on the COBORG
during SVD. Position 02 was set orthogonally to the right from Position 01 by 15 centimeters.
Position 03 was set orthogonally downward from Position 02 by 15 centimeters.
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Figure 14 - Actuated Manipulation System Validation Setup

To summarize the results shown in Table 12 below, the actuated manipulation subsystem
performed well to a relatively high precision when working around the set distance and
workspace area set by the 3 pre-measured goal points. Distance error measurements and statistics
determined in pre-SVD testing confirmed the precision of the actuated manipulation system
meets the precision requirements set forth on this project. Compact distance error measurements
and statistics determined in pre-SVD testing confirmed the consistency and compact size
requirements set forth on this project.

Table 12 -Actuated Manipulation System Validation Results Summary

Distance Error Compact Distance

Sample Size 18 Sample Size 18

Sample Mean (in) 0.354 Sample Mean (in) 13.56

12”? <1e-30 20”? <1e-30

6”? <1e-30 14”? 0.00299

0.8”? 0.0099 13.9”? 0.0166

0.7”? 0.0454
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6.5. Performance Evaluation against Spring Validation Demonstration (SVD)
During SVD, four system tests were carried out to evaluate their performance. Starting with

the vision subsystem test, 10 predefined positions, same as the settings mentioned in the previous
section (6.4), were used to evaluate the vision system performance. These predefined positions
covered different board textures (i.e. shiny and matte) and different hand locations. Instead of
iterating the whole test 4 times, we only went through the test once in SVD. By taking the
average of the errors for all of the cases, we compared the final results with the vision
subsystem’s targeted requirements. The summary of the SVD results is shown in Table 13. The
vision system performed well in all of the testing cases and met our requirements for the vision
system. The averaged euclidean distance error was about 3.74 cm compared to the ground truth
value. As our requirement mentioned, the euclidean distance error shall be within 6 inches (see
more details in section 3). Our SVD performance met the requirement and even left a large
buffer for our system. Also, the surface normal angle error was about 4.17 degrees compared to
the true angle, which is also much less than 45 degrees mentioned in the requirement. In SVD,
we also time the system execution to evaluate the system performance on runtime. For the vision
system, the average execution time is 1.3 seconds over 10 test cases, whereas the success
criterion was to finish execution within 5 seconds.

The voice subsystem was tested by running through 2 trials of the full validation test
described in 6.4. First, the user put on the backpack strap that held the microphone and read off
the two commands for COBORG action, the command to move to the target and subsequent the
command to compact back to the home position. Then, a random phrase was read from a random
sentence generator to test for false-positive command triggers. Next, the two emergency stop
commands were tested, the one within the keyword trigger structure and then the independent
command. To end the trial, another randomly generated sentence was read by the user to test for
false-positive triggers. This process was repeated to showcase 2 trials for SVD. Based on the
qualifications that a command can be repeated once and still pass as a success if correctly
interpreted the second time, the SVD had 100% accuracy in voice recognition. Unfortunately,
many of the commands took two attempts so the demo was not as cleanly successful as it
seemed. To remedy this, the voice subsystem was overhauled to optimize the command
dictionary for improved recognition and the commands were changed to be simpler and more
intuitive. During SVD Encore, one aforementioned trial was performed by Gerald for proof of
concept, and one trial was performed by Dr. Dolan for proof of robustness to various users. In
both trials for both users, every command was recognized on the first attempt for a cleaner 100%
voice recognition accuracy.

To test the actuated manipulation subsystem during SVD, the robot arm was commanded to
move to each of the 3 aforementioned pre-measured actuated manipulation goal points at the
pre-measured set board distance of 90cm. The number of iterations performed on the same point
was cut down to only one iteration during SVD. The results of SVD testing resulted in the
actuated manipulation subsystem meeting its accuracy and precision requirements, as shown in
Table 13 below. The average surface distance of the end effector between the ground truth of a
commanded goal point and the actual landing position of the end-effector was averaged out to be
about 1.46cm between all 3 goal points, which was well below the about 15 cm max error
requirement set. The robot arm was compacted back to its home position after every run to a goal
point, and the average base-to-end distance between the base motor and the end effector at the
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compact/home position was about 34.5 cm, which was well below the max base-to-end distance
of 50.8 cm requirement set

Two non-functional requirements were tested for the hardware subsystem during SVD:
ergonomics and weight requirements. Ergonomics was shown during SVD encore, when a user
from the team wore the COBORG to perform a functional test of the fully integrated COBORG
with voice, vision, and actuated manipulation. The user demonstrated very few readjustments
during use and the robot did not pinch, scratch, or harm the user during the full integration
testing. Further testing of this non-functional requirement will be expanded upon in the Fall
semester to validate the ergonomics of the COBORG. Weighing the COBORG hardware frame
consisted of weighing a user on a bathroom scale then comparing the difference with the user
wearing the COBORG frame and weighing themselves. A digital bathroom scale was used for
this weight measurement. One testing iteration was performed for the weight and the weight
came out to be about 17.5 lbs (shown in Table 13 below), which was well below the weight
requirement for the project at a max weight of 40 lbs.

Table 13 - SVD Results Summary

Subsystem Metrics Success criteria Performance on SVD

Perception:
Vision

Euclidean distance error,
Surface normal angle error,
Execution time

Distance error < 6 in
(~15cm)
Angle error < 45 deg
Execution time < 5s

Avg. distance error =3.74cm
Avg. angle error = 4.17deg
Avg. execution time = 1.3s
(Avg. on 10 testings)

Perception:
Vision

Binary Recognition
Accuracy/Command

60% Recognition Accuracy 100% recognition accuracy

Actuated
Manipulation

Euclidean distance error
Euclidean distance error,
base-to-end

Distance error < 6 in
(~15cm)
Compact distance < 20 in
(50.8 cm)

Avg. distance error = 1.46cm
Avg. compact distance = 34.5 cm

Non-functional Digital bathroom scale Weight < 40 lbs Weight ~= 17.5 lbs

6.6. SVD Strong/Weak Points
We finished strong in our SVD, and we learned quite a bit in the development of our

subsystems. Our vision system performed well in detecting hands; however, it doesn’t tell us the
hand’s pose, which we need for the robot arm to push effectively into the part. We plan on
post-processing the depth map next semester to give us the surface normal of the part we are
pushing into. Our voice subsystem also performed robustly, and next semester we will work on
making it invariant to loud background noises that can be found in factories. Our actuated
manipulation system also performed effectively, however it wasn’t as fast as we thought it would
be, and we want to add another degree of freedom to allow our arm to reach more places. Below
is the detailed breakdown of each subsystem with the pros and cons listed in a digestible format.
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6.6.1. Vision Subsystem:
● Strong points: High detection accuracy, real-time detection (30 FPS)
● Weak points: Some false-positives, color-dependent, hand pose variant
● Future work: Post-processing the point cloud to extract surface normal, filter out visual

noise

6.6.2. Voice Subsystem:
● Strong points: High recognition accuracy, flexible command structure, low/no

false-positives, no false commands sent to main_state_machine
● Weak points: not robust to excessive variable background noise
● Future work: Expand command dictionary, simplify existing commands, optimize

dictionary for improved recognition, add command timeout function

6.6.3. Actuated Manipulation Subsystem:
● Strong points: High position accuracy, no hard collision with user
● Weak points: Inconsistent performance, slow performance, position-only actuation
● Future work: Global-frame stabilization, increase DoF to solve full pose, collision

avoidance, perform multiple simple tasks

7. Project Management
7.1. Work Breakdown Structure

Figure 15 below depicts the updated high-level Work Breakdown Structure (WBS) required
to execute the COBORG system. From the high-level breakdown, we were able to derive the
tasks required to accomplish each of the work packets detailed in the WBS:

Figure 15 - Updated WBS Structure Level 3
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A major difference between our original WBS in the Conceptual Design Report and our
current WBS is the addition of “2.8 New Task Development”. With the overwhelming success of
the Spring semester progress, we feel that we can add another task to develop in the Fall on top
of what was originally planned. With these updated work packets we were able to understand our
timeline in regards to our schedule and when key milestones should take place in the Fall
semester.

7.2. Schedule
We are currently scheduled to begin right on track with the start of the semester. There are

three main phases in the Fall development of the COBORG platform:
● Concept Development
● Subsystem Development
● System Integration and Validation

“Concept Development” is a short sprint at the beginning of the semester that focuses on creating
the design foundation for the new task we are incorporating into the COBORG. After the short
sprint, we will commence with the development of the new task, the development of
enhancements to the core subsystems, and the improvement of the COBORG hardware
framework. Finally, we will have six weeks of integration and validation to ensure that all
components of the COBORG work and are ready for FVD. The “Fall Work Breakdown
Schedule”, generated from our WBS, can be found below in Figure 16. Below it, in Table 14
are the major system development milestones that will be achieved during the fall semester to
achieve our operational goals:

Figure 16 - Fall Work Breakdown Schedule
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Table 14 - Major System Development Milestones for Fall

Date Milestones
06-Sep-2021 Full Actuated Manipulation Integration

28-Sep-2021 New Motor Integrated

10-Oct-2021 Safety Features Integrated

25-Oct-2021 Flashlight Task Integrated

09-Nov-2021 Full System Integrated

23-Nov-2021 Full System Validated

7.3. Test plan
7.3.1. Capability Milestones
The following table, Table 15 contains the key milestones that will be achieved for each

progress review during the fall semester. These coincide with our Fall schedule and will act as
checkpoints to gauge our progress relative to the plan we created:

Table 15 - Key Milestones for Fall

Date Milestones

PR 7: Early September Requirements Generation
Full Actuated Manipulation Integration

PR 8: Mid September Improved Sensor Array

PR 9: Early October

Revalidate Vision System
Safety Features Development

Add Obstacle Detection
Integrate New Motor

PR 10: Mid October
Safety Features Integration

Flashlight Task Development
Revalidate Actuated Manipulation

PR 11: Mid November Flashlight Task Integration
Full System Integration

PR 12: Late November System Validation

7.3.2. Fall Validation Demonstration
The Fall Validation Demonstration will be held in the basement of Newell-Simon Hall in Lab

B512. The equipment needed for this demonstration includes the COBORG backpack, the test
structure used in the spring validation tests, the testing board used in the spring validation tests, a
stopwatch, a measuring tape, a laser pointer, a power drill, 8 screws, record sheets, and a plate
with shiny and matte finishes on either side. An area of roughly 10 feet in diameter will be
required for the test itself.
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The first test will be a validation of the new flashlight function added to the robot. The
accuracy and usefulness of the system will be tested in a method that will be determined after
requirements generation is completed at the start of the fall semester. The initial assumption is
that it will function similarly to the vision and actuated manipulation demonstrations completed
during the spring validation demonstration.

The second test will be a full use case scenario. A user will put on the COBORG backpack,
hold a panel above their head (against the testing structure) and command the COBORG to move
to the target. Once the COBORG has secured the part, the operator will release their hands and
use a power drill and screws to attach the panel to the testing structure. The operator will then
command the COBORG to return home. Once it has reached home, the user will put their hands
back on the panel and command the COBORG to move to the target. After the COBORG has
once again secured the part, the user will remove the screws with the drill, hold the part, and then
command the COBORG to return home. This process will be repeated several times, using either
a matte or shiny surface finish (two different sides of the panel) each time. The COBORG’s
range may be demonstrated by a variety of different testing structure poses. Almost all of the
requirements will be validated by a successful use case. Other requirements will be achieved by
timing the process and making sure that it takes less than the allotted time and that the COBORG
can operate for the allotted minimum battery life (20 minutes).

The remaining requirements will be tested in a nonfunctional miscellaneous test which will
involve measuring various features of the system, such as the total weight of the backpack. In
addition, the various safety features added will be tested for reliability and ease of use. Specific
requirements, and the method(s) to validate them, will be determined at the start of the Fall
semester during the “requirements generation” phase.

7.4. Parts List and Budget
The parts list detailed in Table 16 is actual and covers our expenditures in the Spring

semester. Our goal was to retain a majority of the project funds ($4,000) to allow for hardware
expansion in the Fall. We were able to achieve relatively close to our goal budget, at $3,300. The
major difference in our Concept Design Review budget and the actual spending was the addition
of a $699 computer replacement which was not originally factored as a high likelihood in the risk
assessment. However, we did have funds allocated for that risk and took the measures necessary
to ensure success in our project:
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Table 16 - Spring Budget Spent

No. Part Name Cost Quantity Total Cost
1 Voice Subsystem Parts $34.98 1 $34.98

2 Robot Hardware $119.71 1 $119.71

3 Supplementary Items $501.61 1 $501.61

4 Intel Realsense T265 $199.99 1 $199.99

5 Computer Parts $152.46 1 $152.46

6 Nvidia Jetson Xavier
AGX $699.99 1 $699.99

Total $1708.74

We anticipate that our expenses in the Fall semester will be roughly $1,500 to update the
hardware components of the COBORG platform. Included costs are mainly related to the
fabrication of a new housing and updates to the safety of the system. From the remaining $3,300,
a $1,500 deficit leaves us with a buffer of $1,800 to be used for risk mitigation and unexpected
expenditures. Table 17 below shows the estimated breakdown of the Fall semester budget:

Table 17 - Fall Budget Expenditure

No. Part Name Cost Quantity Total Cost
1 Fiberglass Shell Assembly $400.00 1 $400.00

2 Laser Cut Acrylic Base $200.00 1 $200.00

3 Carbon Fiber Tubing $125.00 1 $125.00

4 Electrical Components $300.00 1 $300.00

5 T-Slotted Aluminium
Assembly $500.00 1 $500.00

Total $1525.00

7.5. Risk Management
An important facet of every project is taking into account potential risks that may arise as the

project progresses forward. These risks span from technical to programmatic, and from
inconsequential to “show-stopping”. To ensure that our project progresses forward successfully,
we have taken into account project risks and detailed tasks taken to mitigate the severity or
likelihood of these risks as shown in Table 18 below:
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Table 18 - Top 11 Risks Mitigation Plans

Risk Label Mitigation Plans
Hebi motor module dies RT1 Ensure at least one spare is secured.

Reduce budget to $2,000 to afford spare

Main computer dies or does not perform to
our standards

RT2 Work out of Cloud, Github Repository

Ensure spare workstation is available

Budget $1300 to purchase spare (Zotac)

Estop devices malfunction RT3 Inquire Biorobotics lab for spare component

Inquire John's inventory for spare device(s)

Ensure Estop device is fail-open

TCP/IP connectivity is lost RT4 Inquire Biorobotics lab for spare

Inquire John's inventory for spare device(s)

If no spare, allocate funds to purchase spare

Water damage to COBORG System RT5 Seal backpack and perform liquid spill test

If operating outside, ensure weather is favorable

Ensure all liquids are 6ft from robot exoskeleton

End Effector Breaks RT6 3D print files downloaded into our Google Drive

3D printed spares on hand

Team lacks ROS fundamentals by start of
spring semester

RR1 Execute plan to learn ROS over winter break

Enforce one week boot camp before Spring

Hire ROS SME to build framework for project

Unable to work 10hrs/week/member on
MRSD project

RR2 Offload work amongst team in certain situations

Treat MRSD project deadlines as HW deadlines

Hazard occurs on user while wearing robot RR3 Be prepared to act when the issue arises

Brief and prep the user on proper procedure

Perform on-the-rack run through before testing

Set torque limits and vision obstacle avoidance

Member contracts COVID RP1 Follow CMU pandemic safety procedures

Create simulation of system in ROS

MRSD program gets disrupted due to
COVID pandemic

RP2 House robot outside of lab environment

Create simulation of system in ROS

Our sponsor graduates in the spring of 2020 RP3 Confirm Julian can commit time after graduation

Acquire non-CMU contact information

By taking into consideration these risks, which span technical, resource, and programmatic
concerns, we have ensured that none of the risks found have a critical impact or likelihood as the
project is executed. Figure 17 demonstrates the risks before mitigation and after:
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Figure 17 - Risk Mitigation Before and After

8. Conclusions
8.1. Lessons Learned

While overall we were able to execute well on the plans we made in the previous semester,
there were still several challenging aspects to this project that we encountered. The biggest
lesson learned is that there never was enough time to complete everything we scoped out, as
project course assignments and elective assignments quickly piled on. We had to be very
thoughtful in how we budgeted time for the project and eventually settled on working
continuously on the project during the weekends while leaving course assignments for the
weekdays. With this strategy, we were able to have five people working a total of 50-100 hours
weekly to stay on track with project objectives. The other biggest lesson we learned was that
documentation proved to be helpful in remembering our thought process as we developed the
COBORG system. We took meeting minutes weekly and used a versioning control system to
keep track of what was edited in the code. We also made sure to create “readme” guides for
every subsystem, so that those who were not the subject matter experts could quickly gain
expertise and begin supporting other subsystems when necessary.

8.2. Key Fall Activities
Our plans for the Fall will be centered around creating new use cases for the COBORG

system. As of now, we want to create a directional flashlight arm that will point a light at the
work envelope of the operator. We may change this as we refine this flashlight concept over the
summer and at the beginning of the Fall semester; however, our overall goal is to create a new
task that is an accessory to the original overhead assistance task. This will allow us to build upon
the concepts that we learned in the Spring semester and will be of great benefit to our learning
outcomes in the upcoming semester. We also are looking to create a product-ready MVP, so that
the COBORG system can coincide with our business course pitch. The Fall semester is where
our MRSD project will be tied together, and we look forward to creating a collaborative
backpack platform that will change the world.
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