Collaborative Cyborg Backpack Platform (CoBorg)

System Development Review

Gerry D'Ascoli Jonathan Lord-Fonda Yuging Oin Husam Wadi Feng Xiang

Project Description

Project Description

Project Description - Use Case

Project Description - Fall 2021

Requirements Modifications

Requirements Modifications - Task Space

- FM7 Shall successfully reach points within a good working range
 - PM7.1 Radius: 1.5 to 3 feet
 - PM7.2 Horizontal Angle: -10 to 10 degrees
 - PM7.3 Vertical Angle: Parallel to ground, up to 10 degrees before vertical
- FM8 Shall account for user's hands, error, and movement when achieving "good working range" (Stability)
 - PM8.1 Mechanical capability even if user moves 6" in any direction and/or rotates 90 degrees to the left or 20 degrees to the right
- FM8 Shall account for user's hands, error, and movement when achieving "good working range" (Vision)
 - PM8.2 Detect user's hands, even if they are 17 degrees outside the task space horizontally, and 10 degrees outside vertically
 - PM8.3 Will detect user's hands only if the backs are facing the cameras (Carnegie under-handed grips)
 University

Requirements Modifications - Obstacle Avoidance

- Object Detection:
 - F.M.9 Shall detect obstacles within task space.
 - P.M.9.1 Will detect obstacles within 1m of depth camera mount.
 - P.M.9.2 Will generate voxels on obstacle surfaces with <1.25" between the voxels.
- Arm Avoidance:
 - F.M.10 Shall avoid the user's arm during actuation.
 - P.M.10.1 Will not collide with the stationary user's arm during actuation 90% of the time.

Carnegie Mellon

University

Current System Status

Overall System

Input:

Sensing data (voice, depth camera, tracking camera)

Coborg System

Sensing, Vision, Voice, Motion Planning, Actuated Manipulation

11

Current System Status - Hardware (Aesthetic)

Black Anodize Orders
 Parts only Cut to length profiles less than or equal to 60" Mill- finish shapes less than or equal to 60"

Current System Status - Hardware (Functional)

Current System Status - Hardware (Functional)

3 DOF Success of Task Space Target Positions

'Task space success ratio: ', 0.59) 'Extended Task space success ratio: ', 0.37) 'Buffer space success ratio: ', 0.44) 'Stability task space success ratio: ', 0.4) 'Stability buffer space success ratio: ', 0.47619047619 4 DOF Success of Task Space Target Positions 3 2 1 V 0 $^{-1}$ -1

Subsystem - Perception (Vision)

Input: Raw RGB image + point cloud

Output: 3D target part position + surface normal

Process:

- 2D YOLO v3 hand detection to extract 2D bounding box
- 3D hand bounding boxes using point cloud data
- Post-process to get averaged 3D position of hands (Deprecated)
- Post-process to get surface normal of averaged target position
- Post-process 3D position and surface vectors from two cameras (In progress)

16

Carnegie Mellon

University

Current System Status - Vision

- Current stage:
 - Current level of functionality
 - Performance validated (SVD): YOLO v3
 - Upgraded sensor system : 2 cameras
 - Integrating into main state machine
 - \circ Modeling
 - Simulation of task space
 - Frame stitching
 - Frame transform
 - Challenges
 - Processing power, edge cases

Subsystem - Perception (Obstacle Avoidance)

Input: Point cloud

• D435i cameras will output the point clouds

Output: 3D Obstacle Voxels

• Using Octomap integrated with Move-it

Process:

- Scan point cloud for obstacles within range
- Generate voxels over obstacles (user's arm)
- Plan path around detected obstacle

Current System Status - Obstacle Avoidance

- Current stage of development
 - Current level of functionality
 - Generates voxels around obstacles within 1m
 - Avoids user's arm based on detected obstacles
 - Modeling & results of completed tests
 - Voxels generate in RViz
 - Demo shown in next slide
 - Challenges faced
 - Trade off between detection & efficiency (FPS)
- Major remaining challenges
 - Obstacle projection outside of vision space (desired)
 - Validation of system

Voxels

Carnegie Mellon

University

19

Current System Status - Obstacle Avoidance

Subsystem - Actuated Manipulation

Input: 3D goal points + obstacle mapping + frame transforms

- Vision subsystem outputs 3D position of hands
- D435i outputs depth point cloud converted to obstacles
- TF frame transforms between cameras and robot model frames

Output: Robot actuates to goal states

Process:

- 1. Process 3D goal position relative to cameras
- 2. Plan path from current state to goal state
- 3. Execute path
- 4. Execute motion compensation
- 5. Calculate temporal transform in t265_odom_frame
- 6. Stabilize relative to updated 3D goal
- 7. Release control & "go home"

Current Status, Challenges

Current System Status - Actuated Manipulation

- Resolved Rate
 - Motion compensation + stabilization control
 - Position based cartesian controller
 - Advantages: smooth trajectory control and transition

Current System Status - Actuated Manipulation

Project Management

PM - Progress Reviews

Milestone	Description			
PR 10: October 27	Integrate hardware 2.0			
	 Initial use case demo 			
	 Arm stabilization demonstrated 			
PR 11: November 10	 FVD dry run 			

PM - FVD Test Plan

Location: NSH B512

Goal	Plan			
Demonstrate system capability, simplicity, reliability, and time capability	Use the Coborg to attach a panel to the testing structure (by screws) and remove it.			
Demonstrate that system can compare to human operator(s)	Demonstrate one and two humans attaching the same panel. Time for comparison to Coborg.			
Demonstrate stability and task space capability	Use the Coborg in a handful of repeated use cases while forcing it to stabilize in different areas of the task space			
Demonstrate battery life	Check remaining power after total usage, extrapolate to time limits			
Demonstrate comfort	Assess user comfort after prolonged, continuous usage			

PM - Projected Fall Expenditures

No.	Part Name	Cost
1	Fiberglass Shell Assembly	\$400.00
2	Laser Cut Acrylic Base	\$200.00
3	Carbon Fiber Tubing	\$125.00
4	Electrical Components	\$300.00
5	T-Slotted Aluminium Assembly	\$500.00
Total Costs		-\$1525.00
udget Remaining		+\$1766.21

Carnegie Mellon

University

PM - Current Budget

No.	Part Name	Cost	
1	Voice Subsystem Parts	\$34.98	
2	Robot Hardware	\$119.71	
3	Supplementary Items	\$501.61	
4	Intel Realsense T265	\$199.99	
5	Computer Parts	\$152.46	
6	Nvidia Jetson Xavier AGX	\$699.99	
7	Hardware V2.0 Upgrade	\$1967.13	
Total Costs		-\$3675.87	Carnegie
Budget Remaining		+\$1324.13	Mellon

PM - Risk

Risks	Title		
'T' = Technical, 'R' = Resource, 'P' = Programmatic, 'S' = Schedule			
RT1	Hebi motor module dies		
RT2	Main computer dies or does not perform per our requirements		
RT3	Estop devices malfunction		
RT4	TCP/IP connectivity is lost		
RT5	Salus Robot disinfects CoBorg with a generous coat of liquid		
RR1	Team lacks ROS fundamentals by start of spring semester		
RR2	Unable to work 10hrs/week/member on MRSD project		
RR3	Hazard occurs on user while wearing robot		
RP1	Member contracts COVID-19		
RP2	MRSD program gets disrupted due to COVID 19 pandemic		
RP3	Our sponsor graduates in the spring of 2020		
RP4	End Effector Breaks		
RS1	Hardware components do not arrive on time (2+ week delay)		

Consequences

Level	Likelihood	Consequences
5	100%	1 Month/\$2,000/Injury
4	80%	2 Weeks/\$1,000
3	60%	1 Week/\$500/Loss of function
2	40%	3 Days/\$200
1	20%	1 Day/\$50
		University

	SCH	EDULE RISK				
Risk Title:	Risk Owner:	Date Submitted:		Date Updated:		
Hardware components do not arrive on time (2+ w	Husam Wadi	9/13/	2021	10/14/2021		
Description of Risk:				Туре?	Consequence	Likelihood
Critical components do not arrive when expected. This causes massive bottlenecks in integration and testing in the weeks leading to FVD.				Technical Schedule Cost	5 Mitigated Consequence	5 Mitigated Likelihood
We will have to demo the Coborg as is, or with pa inventory.	rts scavanged f	rom MRSD				
Action/Milestone	Date	Success Criteria		Consequence Reduction	Likelihood Reduction	
Reach out to parts manufacturer and request accelerated production	10/2/2021	Manufacturer agrees to remove long lead time component			3	~
Order duplicate components from McMasterCarr	10/18/2021	Parts arrive overnight and are used instead		1		

Questions?

