
Carnegie Mellon University

16-682

MRSD Project II

Task 03 Progress Review 9
Team C - COBORG

Jonathan Lord-Fonda
Teammates: Husam Wadi, Feng Xiang, Yuqing Qin, Gerry D’ascoli

October 14, 2021



Table of Contents

Individual Progress 1

Challenges 2

Teamwork 2

Plans 3

1. Individual Progress
My primary tasks for this progress review were centered on debugging the
smart manipulation software node. In order to achieve this I needed to start by
setting up my own branch for the task on Github, internalizing the Github
commands that I’ve been putting off learning, and creating my workflow. I
developed my workflow from Oliver Steele’s blog post about Git (seen here:
https://blog.osteele.com/2008/05/my-git-workflow/). Simply, I use “git add .”
followed by “git commit -m “Your message here.” and “git push” whenever I
make a small change that compiles and runs as expected. Creating a granular
version history allows me to revert changes when I do something incorrectly
and accurately describe the adjustments made in a short comment. It also
helps me focus on completing individual aspects of my code instead of getting
side-tracked onto different tasks before finishing the one I had previously
started. Figure 1 below shows a snippet of the commits that I made yesterday
on the day of the progress review.

https://blog.osteele.com/2008/05/my-git-workflow/


Figure 1 - Git Rhythm

This figure shows a sample of commits I made on the same day as the progress review. The
comments clearly express what was changed so that it is unnecessary to scroll through,
analyzing the code, when trying to look for a specific spot where things went awry. All of the
commits are listed under Gerry D’ascoli’s username because we tend to work on a shared pc
and it isn’t worth logging users in and out of the terminal whenever you want to make commits
at the computer. Our project is small enough that only one or two people tend to work on a
given branch.

Creating my Github workflow allowed me to work efficiently and safely without
interfering with my teammates, which enabled me to progress on debugging
the smart manipulation node. I wrote most of the code for this last semester,
but quit working on it after it successfully compiled, followed by immediately
erroring out. This meant that a variety of the most difficult bugs were left in the
program and saw me adjusting such things as adding options to the launch

1



file, writing down usage instructions as I figured out how to boot up the system
as a whole, and fixing the problems left over from last semester. One of the
most frustrating problems I ran into was my C++ program trying to create a
ROS node before ROS was initialized in the program. In order to resolve this
issue I commented out every callback and global variable and created a local
copy of the global variables in the main loop, after ROS initialization. Then I
compiled and ran the program while, line by line, uncommenting the global
variables. When I found the variables responsible for the error I changed them
to pointers and created references in the main body of the code after
initialization. Many errors like this cropped up, particularly ROS-related issues
that aren’t captured on program compilation. Eventually the entire program
ran smoothly and I began running it independently while using “rostopic pub”
to simulate the other nodes that would be interacting with it. This process has
taught me how important it is to unit test your code as you go and to build it in
such a way that it is modular so that individual parts can be fully debugged
without requiring the entire node to be written and working.

Beyond these primary tasks I discussed project aspects with the other team
members, coordinating my activities with them and utilizing their expertise to
help push me through some difficult debugging challenges in minimal time.

2. Challenges
Debugging is difficult and dry. It takes a significant amount of work and can
induce procrastination by being a large unknown. Debugging can seem like
an insurmountable task because it is difficult to know beforehand how long it
will take and how many bugs there are, thus disincentivizing work on the
issue(s). I believe that the solution to this moving forward is to spend extra
time working out the code architecture ahead of time and break it up into more
manageable chunks that can be individually tested and debugged.

3. Teamwork
Jason’s work during this previous cycle was primarily working with Gerry on
implementing and testing both the resolved rate code and goal stabilization
capabilities. Additionally he worked with Gerry on obstacle avoidance and
calibrated the robot model. Beyond these activities he worked with Yuqing to
upgrade the vision system, measuring and implementing the new positions of
the Realsense cameras.

2



Gerry’s work during this previous cycle included finalizing the goal stabilization
code using resolved rate alongside Jason. Additionally, he tested the object
detection and avoidance system and tuned parameters for its performance.

Yuqing’s work during this previous cycle was primarily executing the vision
system upgrade. Along with this she created a simple demo featuring two
different YOLO networks, with one executing on each camera in the vision
system. Additionally she worked with Jason to measure out the new positions
and orientations.

Husam’s work during this previous cycle primarily included physical upgrades
to the Coborg’s components. Husam cut and assembled the carbon fiber
version of the arm and worked on creating a URDF model in Solidworks.
Additionally he followed up on items our team has been waiting for to complete
the hardware upgrades and began considering parallel objectives for working
on the dynamixel setup.

4. Plans
Before the next progress review I will finish debugging the smart manipulation
node and integrate it with the other nodes and smart manipulation features we
are including in the final build. Beyond this I will be revalidating aspects of the
system and tuning the smart manipulation so that it functions as expected.

3


