
Carnegie Mellon University

Individual Lab Report #10

Author:
Yuqing Qin

Team C: COBORG
Gerald D'Ascoli | Jonathan Lord-Fonda | Yuqing Qin | Husam Wadi

Feng Xiang

Nov. 11, 2021

Table of Content

1 Individual Process 1
1.1 Vision System Update During Integration 1
1.2 Integration 2

2 Challenge 2

3 Teamwork 3

4 Plans 3

1 Individual Process
The Coborg platform is a wearable robotic arm that can help people hold objects
overhead. In this semester, my work in the Coborg project mainly focuses on the
Perception (Vision) Subsystem upgrade. From the last progress review, I have
upgraded the software part for the vision system. By running two YOLO on two cameras
with a moving average to smooth the output, the vision system could get the target
position successfully. For this progress review, I worked with other teammates to
integrate the subsystem together and test the integrated system with our full use case.

1.1 Vision System Update During Integration
During the past two weeks, I worked on some power issues related to multiple cameras. When I
developed the subsystem, I simply launched three cameras(T265, D435i) in separate terminals.
This week, we are doing the integration, so we have to put all the nodes in a single launch file
and only need to launch it once. During the integration testing, we have seen several times that
the camera is failed to launch the first time, and we have to run the camera launch file in
separate terminals to fix the issue. By doing some research online, I found out that this is a
known hardware issue with multiple Intel Realsense cameras launching at the same time, and
there is no official support on this issue yet. After checking several potential solutions provided
by other people, I worked with Jason and solved the issue by adding a 1-second delay between
each camera launch node. The issue is most likely related to the power and the USB
connections. By adding the delay, it can give the system a little bit of time to recognize the USB
port with a different camera. By running 20 repeated testings (i.e. relaunching our main script
several times), it turns out that the current solution can solve the problem with all of the 20
testings launching multiple cameras successfully. Figure 1 below shows the tf frames with all of
the cameras launched successfully.

Figure 1. Camera frames when launching all together

Another main update is related to the speed and accuracy trade-off. After adding the moving
average, it can smooth the output. However, considering the running speed, I only used 3 as the
moving average window size. After doing the integration with other subsystems, I found out that
the whole system ran much slower, even with a smaller window size. Therefore, I switched to

YOLO tiny version and at the same time increase the window size to be 10. Even though the
tiny version would decrease the accuracy of hand detection, with larger window size, it can
improve the accuracy a little bit. However, by using the tiny model, the running speed increases
a lot, from 4FPS (full version) to 20 FPS (tiny) when running the full pipeline. Currently, I am still
continuing on the window size tuning.

1.2 Integration
During the last two weeks, we all focused on integration. The vision system is the main
component of our system. Jason and I worked together to integrate the vision with the motion
planning system first. Also, since the cameras are mounted on the robot, we have to recalibrate
the cameras again to make sure of the performance. The current camera configuration is almost
the same compared to the last PR except for the T265 camera currently is mounted on the back
of the D435i cameras. Figure 2 below shows the hand positions and end-effector position when
running the full use case. From the figure, we can see that the end-effector reaches the middle
point between two hands.

Figure 2. Full Use Case Demo

2 Challenge
The main challenges I faced are about the accuracy and speed trade-off. By looking at
our functional requirements, for distance error, it should be within 6 inches. The latency
of the full use case should be within 5 seconds. After comparing these two
requirements, I found out that for our use case, the distance might have a higher
tolerance than the latency requirement. Therefore, I experimented with different model
sizes with different smoothing window sizes to balance the accuracy and run speed.

3 Teamwork

Team Member Teamwork Progress

Feng Xiang - Worked with me on integration on vision and motion
planning
- Calibrated the camera system with me
- Worked with the whole team to do the integration testing

Jonathan Lord-Fonda - Worked on debugging the resolved rate
- Worked with Jason on smart manipulation testing
- Worked with the whole team to do the full use case testing

Gerry D’Ascoli - Worked with Jason on resolved rate refining
- Worked on the integration
- Updated the voice system and add a voice feedback
- Worked on new hardware assembly

Husam Wadi - Worked on new hardware design and integration
- Worked on 3D printed parts
- Worked on the assembly of new hardware design
- Worked with the whole team to test the full use case

Table 2. Teamwork for Coborg

4 Plans
In the next week before FVD, I would focus on tuning the parameters related to the
vision system to ensure performance. During PR11, I saw a failed case on the vision
system. I will also look into it and debug that issue. Also, dealing with the edge cases
(i.e error out feedback) in my vision node is another main focus for next week. The
vision system should transfer the error message to the main state machine and let the
user know about the current stage. I would focus on this feature implementation as well.

