

# CraterGrader: Autonomous Lunar Sitework Robot Team A Fall 2022 Test Plan

John Harrington

Ryan Lee

Alex Pletta

**Russell Wong** 

Ben Younes

Advisor/Sponsor: Dr. William "Red" Whittaker

Submission Date: September 21, 2022

## Table of Contents

| Introduction                               | 3  |
|--------------------------------------------|----|
| Logistics                                  | 3  |
| Schedule                                   | 3  |
| Tests                                      | 4  |
| Test F01: Autograder with Upgraded blade   | 4  |
| Test F02: Mapping Test with Static Terrain | 5  |
| Test F03: Global Path Planning             | 6  |
| Test F04: State accuracy first test        | 7  |
| Test F05: State accuracy final test        | 8  |
| Test F06: Mapping test w/ changing terrain | 9  |
| Test F07: Global trajectory following      | 10 |
| Test F08: Autonomous mapping               | 11 |
| Test F09: Autonomous Single Crater Test    | 12 |
| Test F10: Pre-FVD Multi-Crater Test        | 13 |

## Introduction

This document outlines the various tests that Team A (CraterGrader) will conduct during the semester (Fall 2022) to verify that we are progressing towards meeting desired <u>performance</u> <u>and non-functional requirements</u> for the project. The tests verify technical progression towards the FVD of demonstrating fully autonomous grading of a lunar simulant worksite. An overview of this semester's milestones is shown below (see Schedule).

## Logistics

The majority of tests will take place in the Planetary Robotics Lab sandbox on the basement floor of GHC, the same location in which the SVD was performed last semester. The FVD will be live, while all other tests will be run by appropriate team personnel with the results and/or recordings presented during the corresponding Progress Reviews. Everyone will be participating in the FVD, but only the necessary personnel need to be present for other tests.

## Schedule

| Date    | Identifier    | Capability Milestone(s)      | Associated<br>Test(s)            | Associated System<br>Requirements         |
|---------|---------------|------------------------------|----------------------------------|-------------------------------------------|
| Sep. 21 | PR8a          | Hardware Freeze              | Test F01                         | R06, R07, R08, R09,<br>R10                |
| Sep. 25 | PR8b          | Planner, Mapping Implemented | Test F02<br>Test F03             | R03, R05, R13                             |
| Oct. 2  | PR9a          | Full Functionality           | Test F04<br>Test F05             | R03, R05, R06, R07,<br>R08, R11, R12, R13 |
| Oct. 9  | PR9b          | Autonomous Testing           | Test F06<br>Test F07             | R03, R05, R13                             |
| Oct. 30 | PR10          | System Freeze                | Test F08<br>Test F09<br>Test F10 | All                                       |
| Nov. 15 | PR11          | Dry Run Demo                 |                                  | All                                       |
| Nov. 21 | FVD<br>(PR12) | FVD                          |                                  | All                                       |

| Date    | Identifier | Test                             | Primary<br>Subsystem(s)                      | Primary System<br>Requirements |
|---------|------------|----------------------------------|----------------------------------------------|--------------------------------|
| Sep. 17 | Test F01   | Autograder with Upgraded Blade   | Mechanical,<br>Motion Control                | R06, R07, R08, R09             |
| Sep. 18 | Test F02   | Mapping Test with Static Terrain | Mapping,<br>Sensing,<br>Localization         | R03                            |
| Sep. 24 | Test F03   | Global Path Planning             | Planning                                     | R05                            |
| Sep. 24 | Test F04   | State accuracy first test        | Localization                                 | R03, R05                       |
| Oct. 1  | Test F05   | State accuracy final test        | Localization                                 | R03, R05                       |
| Oct. 2  | Test F06   | Mapping test w/ changing terrain | Mapping,<br>Localization                     | R03                            |
| Oct. 7  | Test F07   | Global trajectory following      | Planning,<br>Localization,<br>Motion Control | R05                            |
| Oct. 9  | Test F08   | Autonomous mapping               | All (excl. blade)                            | R03, R05, R11,<br>R12, R13     |
| Oct. 14 | Test F09   | Autonomous single crater         | All                                          | All                            |
| Oct. 21 | Test F10   | Autonomous multi-crater          | All                                          | All                            |

## Tests

## Test F01: Autograder with Upgraded blade

| Test Name                                                                                                                                                                             | Autograder with Upgraded Blade                                            | Test Number | Test F01 |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|----------|--|
| Objective                                                                                                                                                                             |                                                                           |             |          |  |
| Verify autograder blade control functionality with upgraded blade                                                                                                                     |                                                                           |             |          |  |
| Elements                                                                                                                                                                              | Primary: mechanical, motion control                                       |             |          |  |
| Location                                                                                                                                                                              | GHC Sandbox                                                               |             |          |  |
| Equipment                                                                                                                                                                             | CraterGrader worksystem, teleop controller, GHC sandbox infrastructure    |             |          |  |
| Personnel                                                                                                                                                                             | onnel 3 persons: 1 teleoperator, 1 e-stop operator/tether, 1 videographer |             |          |  |
| Procedure                                                                                                                                                                             |                                                                           |             |          |  |
| <ol> <li>The robot is placed in the worksite and powered on following the <u>Power Up/Down</u><br/><u>Procedure</u>.</li> <li>The tool auto-homing is verified on startup.</li> </ol> |                                                                           |             |          |  |

- The following subsystem is launched (according to <u>Software Launch List</u>)

   Motion control (verify tool is auto-homed before launching)
- 4. In TELEOP mode, the teleop controller verifies tool can be raised and lowered by:
  - a. Manually setting tool to autograder design height
  - b. Updating autograder params to use that design height
- 5. The teleop controller zeros tool position
- 6. The motion control system is placed in autograder mode
- 7. The robot is driven forward and backward to assess autograder functionality

- 1. Tool auto-homes on startup
- 2. Tool can be raised and lowered with full teleop mode
- 3. In autograder mode
  - a. When reversing, the tool is raised to a fixed stow height
  - b. At all other times, the tool kept at a fixed design height

### Test F02: Mapping Test with Static Terrain

| Test Name                                                                                                                                                                                                                                                                                        | Mapping Test with Static Terrain                                                               | Test Number | Test F02 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------|----------|
| Objective                                                                                                                                                                                                                                                                                        |                                                                                                |             |          |
| Quantitatively                                                                                                                                                                                                                                                                                   | observe live mapping performance in the sand                                                   | dbox.       |          |
| Map is going to rely heavily on localization performance, which will improve over the semester therefore committing to numerical requirements is unnecessary                                                                                                                                     |                                                                                                |             |          |
| Map comparison of FARO vs. cg-mapping will serve as a first pass of what is feasible with regards to map quality and will be targeted for improvement as localization continues to improve                                                                                                       |                                                                                                |             |          |
| Elements                                                                                                                                                                                                                                                                                         | Primary: mapping, sensing; Secondary: localization                                             |             |          |
| Location                                                                                                                                                                                                                                                                                         | GHC Sandbox                                                                                    |             |          |
| Equipment                                                                                                                                                                                                                                                                                        | Equipment CraterGrader worksystem, teleop controller, GHC sandbox infrastructure, FARO scanner |             |          |
| Personnel                                                                                                                                                                                                                                                                                        | Personnel 3 persons: 1 teleoperator, 1 e-stop operator/tether, 1 videographer                  |             |          |
| Procedure                                                                                                                                                                                                                                                                                        |                                                                                                |             |          |
| <ol> <li>Personnel create interesting static terrain in the worksite</li> <li>The robot is placed in the worksite and powered on following the <u>Power Up/Down</u><br/><u>Procedure</u>.</li> <li>The following subsystems are launched (following the <u>Software Launch List</u>).</li> </ol> |                                                                                                |             |          |

- a. Motion Control  $\rightarrow$  Full teleop ONLY (and idle)
- b. Sensing
- c. Localization
- d. Mapping
- e. Visualization
- 4. The robot is driven around the worksite, building up map until all cells are filled,
- 5. The robot is removed from the worksite,
- 6. The FARO scans the worksite and CloudAnalysis is performed on the point cloud.

1. Map generated by worksystem closely resembles map obtained from FARO scan, after post-processing through CloudAnalysis

### Test F03: Global Path Planning

| Test Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Global Path Planning                                                                                 | Test Number                               | Test F03                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------|--|
| Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                           |                         |  |
| The objective transport plar                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | of Test F03 is to verify ROS2 implementation on<br>oner and the A* lattice planner to be followed by | of the "full" plann<br>/ the mobility sys | er, including the stem. |  |
| This will happ<br>any developm                                                                                                                                                                                                                                                                                                                                                                                                                                                                | en with a pre-canned map and does not requir<br>nent machine. The output lattice plan will be vis    | e the vehicle, it o<br>sualized using R   | can happen on<br>/IZ    |  |
| Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Planning ROS2 Launch File, Pre-canned Map                                                            | )                                         |                         |  |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not relevant                                                                                         |                                           |                         |  |
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Personal Development Laptop                                                                          |                                           |                         |  |
| Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3 persons: 1 ROS2 operator/videographer, 1                                                           | note taker, 1 tesi                        | t director              |  |
| Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                      |                                           |                         |  |
| <ol> <li>A ROS2 node publishing a known, constant map and a vehicle pose is launched</li> <li>A unit-testable ROS2 planning node subscribes to the map and runs a callback to generate the following         <ul> <li>a. Transport Planner Map</li> <li>b. Lattice Planner</li> </ul> </li> <li>The transport plan and lattice plan are visualized in RViz</li> <li>The expected output from the prototype script is compared to both outputs for identicality or high similarity.</li> </ol> |                                                                                                      |                                           |                         |  |
| Verification (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Criteria                                                                                             |                                           |                         |  |

- 1. The transport plan in ROS2 looks almost identical to the Python prototype when using the same map.
- 2. The lattice planner outputs a similar plan to the Python script when both start at the same location, for the same or similar transport plan.
- 3. RViz screenshots shall be taken, and the overall ROS2 topic Hz will be recorded for planner publishing.

### Test F04: State accuracy first test

| Test Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | State accuracy first test                                | Test Number       | Test F04    |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------|-------------|--|
| Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Objective                                                |                   |             |  |
| Test updated covariance tu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | all updated elements of the localization subsys<br>ning. | stem, with an ear | ly pass at  |  |
| Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Localization, sensing                                    |                   |             |  |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GHC Sandbox                                              |                   |             |  |
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CraterGrader worksystem, teleop controller, C            | GHC sandbox inf   | rastructure |  |
| Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 persons: 1 teleoperator, 1 e-stop/tether ope           | rator, 1 videogra | pher        |  |
| Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                          |                   |             |  |
| <ol> <li>Procedure         <ol> <li>The robot is placed in the center of the worksite facing one of the walls, and powered on following the <u>Power Up/Down Procedure</u>. This includes all external infrastructure preparation, including the UWB beacons and the Leica TS16 total station.</li> <li>The motion control, sensing, and localization subsystems are launched (following the <u>Software Launch List</u>).</li> </ol> </li> <li>Plotjuggler is run to display live robot state variables (x, y, z, roll, pitch, yaw, vx, vy, vz) over time, and a screen recording is initiated.</li> <li>The following tests are run with the robot in various state configurations. After each step, the Plotjuggler data are exported to a CSV file:         <ol> <li>a. State information is captured with the robot idle at the center of the worksite</li> <li>b. A marking is placed one meter aned of the robot using a measuring tape. The robot is driven forward one meter and then backward one meter.</li> <li>c. The robot is driven up an incline with a reasonable change in z position.</li> <li>d. The robot is placed on an incline with a reasonable slope causing a non-zero pitch.</li> <li>f. The robot is placed on an incline with a reasonable slope causing a non-zero roll.</li> <li>g. The e-stop operator holds the robot in place by the rear handle while the teleoperator commands forward motion, forcing the vehicle to slip. The e-stop</li> </ol></li></ol> |                                                          |                   |             |  |

entrapped or if drive motors begin to stall. The e-stop operator must hit the onboard e-stop if the teleoperator does not stop in a timely manner.

5. If verification criteria (as detailed below) are failing at any point, fine-tune covariance matrices and repeat the relevant steps.

#### **Verification Criteria**

- 1. The time-varying signals for all robot state variables are observed to correspond to the actual robot state for all tests being run.
- 2. The EKF is clearly able to effectively incorporate input from all elements, including newly added modalities.
- 3. Clear differentiation between map and odom frame velocities can be observed during the slip test.

### Test F05: State accuracy final test

| Test Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | State accuracy final test                                                                 | Test Number        | Test F05         |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------|------------------|--|
| Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                    |                  |  |
| Finalize covar<br>quantitative re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | iance matrices for all elements of the EKF in the sults for state estimation performance. | ne localization su | ıbsystem. Obtain |  |
| Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Localization, sensing                                                                     |                    |                  |  |
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GHC Sandbox                                                                               |                    |                  |  |
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CraterGrader worksystem, teleop controller, GHC sandbox infrastructure, measuring tape    |                    |                  |  |
| Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 persons: 1 teleoperator, 1 e-stop/tether ope                                            | rator, 1 videogra  | pher             |  |
| Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                    |                  |  |
| <ol> <li>The robot is placed in the center of the worksite facing one of the walls and powered<br/>on following the <u>Power Up/Down Procedure</u>.</li> <li>The motion control, sensing, and localization subsystems are launched (following the<br/><u>Software Launch List</u>).</li> <li>Plotjuggler is run to display live robot state variables (x, y, z, roll, pitch, yaw, vx, vy, vz)<br/>over time, and a screen recording is initiated.</li> <li>The following tests are run with the robot in various state configurations. After each<br/>step, the Plotjuggler data are exported to a CSV file:         <ul> <li>a. State information is captured with the robot idle at the center of the worksite</li> <li>b. A marking is placed one meter ahead of the robot using a measuring tape. The<br/>robot is driven forward one meter and then backward one meter.</li> <li>c. The robot is driven up an incline with a reasonable change in z position.</li> </ul> </li> </ol> |                                                                                           |                    |                  |  |

- d. The robot is driven along a quarter-circle arc such that it faces a new wall.
- e. The robot is placed on an incline with a reasonable slope causing a non-zero pitch.
- f. The robot is placed on an incline with a reasonable slope causing a non-zero roll.
- g. The e-stop operator holds the robot in place by the rear handle while the teleoperator commands forward motion, forcing the vehicle to slip. The e-stop operator must inform the teleoperator to stop if the vehicle becomes too entrapped or if drive motors begin to stall. The e-stop operator must hit the onboard e-stop if the teleoperator does not stop in a timely manner.
- 5. If verification criteria (as detailed below) are failing at any point, fine-tune covariance matrices and repeat the relevant steps.

- 1. The time-varying signals for all robot state variables are observed to correspond to the actual robot state for all tests being run.
- 2. The RMS noise for all robot state variables is determined to be no worse (ideally better) than the results from Test 04.
- 3. Clear differentiation between map and odom frame velocities can be observed during the slip test.

### Test F06: Mapping test w/ changing terrain

| Test Name                                                                                                                                                                                                                               | Mapping test w/ changing terrain                                              | Test Number      | Test F06   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------|------------|
| Objective                                                                                                                                                                                                                               |                                                                               |                  |            |
| Confirm the mapping architecture's capability to handle dynamically changing terrain (assuming reasonable localization) with the usage of the grading blade.                                                                            |                                                                               |                  |            |
| Elements                                                                                                                                                                                                                                | Primary: mapping; Secondary: localization                                     |                  |            |
| Location                                                                                                                                                                                                                                | GHC Sandbox                                                                   |                  |            |
| Equipment                                                                                                                                                                                                                               | CraderGrader robot, GHC Sandbox infrastruc                                    | ture, Shovel, FA | RO scanner |
| Personnel                                                                                                                                                                                                                               | Personnel 3 persons: 1 teleoperator, 1 e-stop/tether operator, 1 videographer |                  |            |
| Procedure                                                                                                                                                                                                                               |                                                                               |                  |            |
| <ol> <li>The sandbox worksite is set up with varying topographical features, including craters of varying sizes, bumps, pits, and strips of positive and negative displacements.</li> <li>A FARO prescan is taken and saved.</li> </ol> |                                                                               |                  |            |

- 3. The robot is placed in the worksite and powered on following the <u>Power Up/Down</u> <u>Procedure</u>.
- 4. The motion control with full teleop (and idle), sensing, localization, mapping, and visualization subsystems are launched (following the <u>Software Launch List</u>).
- 5. Diagnostic checks through Foxglove are done.
- 6. Begin recording the video of the testing process.
- 7. Use ros2 bag record -a to record the dynamically generated map.
- 8. The teleoperator enters the worksite and uses a shovel to dig a pit in front of the robot, putting the displaced material next to the pit while the robot is stationary. The teleoperator leaves the worksite afterwards.
- 9. The teleoperator commands the blade to the highest position (retracted).
- 10. The CraterGrader worksystem is driven around the worksite to get an initial map of the worksite (filling all cells) combining the localization, perception, and mapping subsystems.
- 11. Change the CraterGrader work system into autograder mode.
- 12. The robot is driven around the worksite, grading craters, spreading positives, and digging out minor negative topological features while running the mapping subsystem.
- 13. Stop recording the test.
- 14. Power down the robot following the <u>Power Up/Down Procedure</u>.
- 15. Remove the robot from the worksite.
- 16. A scan of the worksite is taken and cloudAnalysis is used to analyze the scan for V&V.

- Qualitatively, observe the continuously updated map as the terrain is dynamically updated, ensuring that it appears accurate. This includes both the initial negative/positive displacement created with a shovel and the grading done by the robot.
- 2. Relative to the robot speed, the map is updated sufficiently quickly when observing mismatched topographical features.
- 3. The final map from the vehicle is compared to the FARO scan for an idea of the underlying final map performance.

### Test F07: Global trajectory following

| Test Name                                                                                                 | Global trajectory following                                                | Test Number | Test F07 |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------|----------|
| Objective                                                                                                 |                                                                            |             |          |
| Integrate planning and mobility control subsystems for fully autonomous path following (drive and steer). |                                                                            |             |          |
| Elements                                                                                                  | ents Primary: planning, mobility control; Secondary: localization, sensing |             |          |

| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GHC Sandbox                                                                                                                                                                     |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CraterGrader worksystem, GHC sandbox infrastructure                                                                                                                             |  |  |
| Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3 persons: 1 vehicle operator, 1 e-stop/tether operator, 1 videographer                                                                                                         |  |  |
| Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                 |  |  |
| <ol> <li>The robot is placed in the worksite and powered on following the <u>Power Up/Down</u><br/><u>Procedure</u>.</li> <li>The motion control, planning, sensing, and localization subsystems are launched<br/>(following the <u>Software Launch List</u>).</li> <li>The planner is provided with a mock terrain map containing a single crater, from which<br/>it can generate a kinematically feasible path to fill this hypothetical crater.</li> <li>Planned paths and control messages are recorded using ros2 bag record -a</li> <li>The robot mode is switched to autonomous mode.</li> <li>The mobility controller executes the appropriate drive velocity and steering commands<br/>to follow the designated path.</li> </ol> |                                                                                                                                                                                 |  |  |
| Verification Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                 |  |  |
| <ol> <li>The ro<br/>genera</li> <li>The ro</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | bot's position as reported by the localization subsystem tracks the path<br>ated by the planner.<br>bot is able to reach all intermediate waypoints along the path that make up |  |  |

2. The robot is able to reach all intermediate waypoints along the path that make up in-and-out crater-filling primitives.

## Test F08: Autonomous mapping

| Test Name                                                                                                                                                                                                                                                                               | Autonomous mapping | Test Number | Test F08 |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------|----------|--|
| Objective                                                                                                                                                                                                                                                                               |                    |             |          |  |
| The first attempt at autonomously mapping the worksite, starting only with a designated coverage area to map. The worksystem will need to perform a coverage plan to map the entire worksite, and then follow that generated trajectory.                                                |                    |             |          |  |
| The mapping system will need to use both the localization and perception systems to effectively build the sitewide map. This information will be used to both recognize progress made towards full site mapping as well as potential obstacles to avoid throughout the mapping process. |                    |             |          |  |
| The completion of this task will result in a cohesive sitewide map that matches previously measured ground truth, while avoiding entrapment throughout the process.                                                                                                                     |                    |             |          |  |

| Elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Perception, Localization, Mobility, Mapping                                                                                                                                                                                                                                                 |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Location GHC Sandbox                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                             |  |
| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Equipment CraderGrader robot, GHC Sandbox infrastructure, FARO scanner                                                                                                                                                                                                                      |  |
| Personnel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 persons: 1 autonomy operator, 1 e-stop/tether operator, 1 videographer                                                                                                                                                                                                                    |  |
| Procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                             |  |
| <ol> <li>The sandbox will be set up with multiple craters within specs driven by requirements.</li> <li>Designated mapping task parameters are configured.</li> <li>A ground-truth scan of the worksite will be taken using the FARO scanner.</li> <li>The robot is placed in the worksite and powered on following the <u>Power Up/Down</u><br/><u>Procedure</u>.</li> <li>All subsystems are launched (following the <u>Software Launch List</u>).</li> <li>System verification checks are performed via Foxglove system monitoring module</li> <li>Robot is commanded to conduct site mapping</li> <li>Power down the robot following the <u>Power Up/Down Procedure</u>.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                             |  |
| Verification Criteria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                             |  |
| <ol> <li>The procest</li> <li>The roction</li> <li>The roct</li></ol> | roduced map data output from the robot is quantitatively similar to a similarly<br>ssed map generated from the FARO laser prescan.<br>obot is able to avoid entrapment and does not require human intervention<br>hout operation.<br>overage is complete relative to the assigned map area. |  |

## Test F09: Autonomous Single Crater Test

| Test Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Autonomous Single Crater Test | Test Number | Test F09 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------|----------|--|
| Objective                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |             |          |  |
| The first attempt at a fully autonomous test with no human intervention tests all subsystems integrated together. A single crater is created in the sandbox to be graded.                                                                                                                                                                                                                                                                                                              |                               |             |          |  |
| Perception's ability to see the height of the site and craters; Localization's ability to accurately position the robot relative to the worksite, infrastructure, and crater; Mapping's ability to map the flat worksite and the crater as a set of highs (sources) and lows (sinks); Planning's ability to assign grading directionality to the sources and sinks, generate waypoints, and create paths; Control's ability to follow those generated paths through actuator commands. |                               |             |          |  |

Qualitatively: Completion of worksite grading task + corresponding efficiency, determining root causes of potential inefficiencies.

Quantitatively: Flatness requirements will be measured but full compliance is not required to pass the test. Comparison between map between Mapping and as measured by total station.

| Elements  | Perception, Mapping, Planning, Control, and Localization                 |
|-----------|--------------------------------------------------------------------------|
| Location  | GHC Sandbox                                                              |
| Equipment | CraderGrader robot, GHC Sandbox infrastructure, FARO scanner             |
| Personnel | 3 persons: 1 autonomy operator, 1 e-stop/tether operator, 1 videographer |

Procedure

- 1. The sandbox worksite is set up with a single crater.
- 2. A prescan is taken and saved using the FARO scanner.
- 3. The robot is placed in the worksite and powered on following the <u>Power Up/Down</u> <u>Procedure</u>.
- 4. All subsystems are launched (following the Software Launch List).
- 5. All necessary nodes are launched.
- 6. Go-no checks through Foxglove are done.
- 7. The robot is switched to autonomous mode.
- 8. The robot conducts mapping pass autonomy when given a start command.
- 9. The robot proceeds to do a full grade of the worksite.
- 10. Power down the robot following the Power Up/Down Procedure.
- 11. Remove the robot from the worksite.
- 12. A scan of the worksite is taken and cloudAnalysis is used to analyze the point cloud for V&V.

#### **Verification Criteria**

- 1. The planner is visually verified to act "intelligently" while grading the single crater.
- 2. The robot does not get stuck or require human intervention.
- 3. The worksite looks visually flat and graded.
- 4. The final map performance from the vehicle is quantitatively compared to the FARO scan by analyzing the FARO scan using cloudAnalysis.

### Test F10: Pre-FVD Multi-Crater Test

| Test Name | Pre-FVD Multi-Crater Test | Test Number | Test F10 |
|-----------|---------------------------|-------------|----------|
| Objective |                           |             |          |

Test F10, Pre-FVD Multi-Crater Test, is functionally the same as Test F09, except with more challenging terrain for the planner. Specifically, this test addresses the ability of the planner and control to navigate multiple claustrophobic craters.

The planner's ability to select good waypoints, and controller's ability to keep the vehicle on track will be tested while traversing the worksite.

Qualitatively we will observe the efficiency of the total system, including behavior and speed. Flatness requirements will be measured but full compliance is not required to pass the test (added site geotechnic requirements would be a full FVD).

| Elements  | Mapping, Perception, Planning, Control, and Localization                 |
|-----------|--------------------------------------------------------------------------|
| Location  | GHC Sandbox                                                              |
| Equipment | CraderGrader worksystem, GHC Sandbox Infrastructure, FARO scanner        |
| Personnel | 3 persons: 1 autonomy operator, 1 e-stop/tether operator, 1 videographer |
|           |                                                                          |

#### Procedure

- 1. The sandbox worksite is set up with a crater topography.
- 2. A FARO prescan is taken and saved.
- 3. The CraterGrader robot is powered on in the sandbox.
- 4. All necessary nodes are launched.
- 5. Diagnostic checks through Foxglove are done.
- 6. Robot conducts mapping pass autonomy when given a start command.
- 7. Robot proceeds to do full grade of worksite
- 8. FARO scan of worksite is taken and pumped through CloudAnalysis scripting for V&V

#### **Verification Criteria**

- 1. Planner is visually verified to act "intelligently" while managing multiple craters in close proximity.
- 2. Vehicle does not get stuck nor requires human intervention.
- 3. The final map from the vehicle is compared to the FARO scan for an idea of underlying final map performance, which may be difficult to interpret due to flatness.
- 4. The worksite looks visually flat and graded. The FARO scan is analyzed using CloudAnalysis to confirm quantitatively.