
MRSD Project Course

Team I – AIce

Autonomous Zamboni Convoy

Individual Lab Report 5

Team
Rathin Shah

Nick Carcione

Yilin Cai

Jiayi Qiu

Kelvin Shen

Author
Kelvin Shen

Apr 6, 2022

Table of Contents

Individual Progress ...2

Challenges ...4

Teamwork ..5

Plans ..6

Individual Progress

During the past few weeks, I focused on solving the problem of losing track of

markers when the leader Zamboni ice resurfacer makes a turn. In simulation, I solved

the problem by setting up two cameras on the follower and three marker boards on the

leader. In addition, I validated this new configuration with the waypoint generation

and redesigned the perception pipeline accordingly. In parallel, I set up the

environment for the autonomy as well as the interface between ROS and Arduino on

Jetson AGX Xavier. I also managed to run the Husky software and control it using a

gamepad.

Two Camera Setup

To avoid losing track of markers when the leader Zamboni ice resurfacer is making

turns, I added one more RealSense D435i to the follower. This, along with the

original D435i, composes a 136° field of view, which is illustrated in Figure 1. I also

added two more ArUco marker boards to the leader, one on the left and the other on

the right, also illustrated in Figure 1. All the three marker boards on the leader are

from three different ArUco dictionaries so that the detector can distinguish between

them when iterating over these three known dictionaries. The number of markers is

used to determine which marker board from which camera’s view to be used as the

final pose estimation, rather than randomly using one or fusing multiple detections.

This is important because the goal of the pipeline is to find the transform from the

leader base to the camera, and different boards from different cameras’ views will

have different transform, leading to at most 6 possible combinations. Therefore, either

Figure 1. Two-Camera FoV

fusion or randomly picking a combination will not give the exact transform from the

board (that is used to estimate the pose) to the camera (that detects the board). At the

end of the pipeline, it transforms the estimated pose from OpenCV conventions to

ROS tf conventions, as explained in ILR3, right-multiplies it by the transform from

the leader base to the board (that is used to estimate the pose) and broadcasts the

transform from the leader base to the camera (that detects the board). Figure 2 shows

the result of our new perception configuration. The top left image concatenates two

views from the two cameras and draws the estimated pose as an axis on the marker

board. The top right terminal is calculating the rotation and translation difference

between the estimated leader base and the ground truth. We can observe that even

when the leader is almost making a U-turn, the translation error is still kept on a scale

of centimeter per axis and the rotation error is kept within 0.5° per axis.

Figure 2. Pose Estimation Result when Leader is Making a U-turn

Validation with Waypoint Generation

The most dependent module on perception is waypoint generation. Only with a

robust, consistent estimate of the leader pose will the follower follow a smoothly

generated trajectory. However, during the integration of perception with waypoint

generation, we have found that the delay of broadcasting estimated leader base leads

to zigzag patterns in waypoints, as shown in Error! Reference source not found.

(waypoints directly sampled from leader base position is in green, and the red

waypoints are generated by adding the lateral offset

to each leader waypoint, which will be followed by

the follower). In particular, the tf broadcasted by the

pose estimation script converges to the ground truth

when the leader is static. However, when the leader

starts moving, the estimated leader pose is always

one timestep behind the ground truth, leading to the

oscillating waypoints. To solve this, I optimized the

script by removing redundant callbacks and exiting

the loop that iterates over three boards and two
Figure 3. Zigzagging Waypoints

cameras whenever we can decide the optimal combination to be used for pose

estimation. This improves the waypoints when the leader is moving straight ahead but

the problem still exists when the leader is taking turns. Further smoothing is required

for local waypoints before the lateral offset can be applied to them to generate

follower’s waypoints.

Back-up Platforms

I managed to set up the software for the Husky UGV and was able to remotely control

it with a gamepad. Husky will be used as the back-up leader with a single ArUco

marker board mounted on it. On the other hand, regarding the back-up follower, I

have set up the environment on Jetson AGX Xavier which is required to run the pose

estimation script using the physical RealSense D435i, as well as the rosserial package

as the interface between ROS and Arduino.

Challenges

The major challenges I have encountered when implementing the tasks above include:

1. Naming conflicts when including multiple cameras in one Zamboni’s URDF:

This is mainly due to links or joints that do not change their names based on

the input arguments. This leads to conflicting namings when one includes two

cameras’ URDFs but both point to the same base file. This challenge was

solved by replacing the fixed names of links and joints in the base file by

variable names depending on input arguments (e.g. camera1_link,

camera2_link). Also one important thing to note is that args is a global

dictionary, which is accessible from within any file or macro, and this cost me

hours debugging. For example, if one creates one single argument called

camera_name in each of the macro that calls the base xacro file for the

camera, and assigns it with camera1 in one macro and camera2 in the

other, there will be errors such as “camera1_link is not unique” because

camera_name is a global argument so both macros will pass the same text

into the base xacro file.

2. Zigzagging waypoints generated using inconsistent leader pose estimations:

Besides the causes mentioned above that led to zigzagging waypoints, the

problem initially was much worse than what Error! Reference source not found.

shows. It was because inside the pose estimation script, I iterated over each

board, and for each board, I took two images from two cameras, determined

which image to use based on the number of markers detected for that

particular board, and broadcasted the transform from that board to the selected

camera per iteration. This caused inaccurate pose being broadcasted even

when a board is in a bad configuration (such as the board on both sides when

the leader is driving straight forward). Therefore, the solution was to maintain

a maximum number of markers detected per board, besides the number of

markers per camera in each iteration, and to skip any board that doesn’t return

more markers in either camera view. In this way, it’s guaranteed that only one

tf will be broadcasted per callback instead of three tf’s in the worst case. This

significantly reduced the amplitude of the oscillation in the waypoints

generated to the extent shown in Error! Reference source not found.. And as

mentioned, further smoothing is required for local waypoints.

3. Setting up environment on Jetson

This challenge was mainly caused by the uncleaned environment from the

team that used this Jetson before. For example, some packages that took huge

amount of disk space will not be used by our project but removing them

causes dependencies issues in other packages that we need. Also since Jetpack

only supports up to Ubuntu 18.04, which means ROS Noetic cannot be

installed, we have to use Melodic and Python 2, but a lot of packages and

libraries have either stopped the support or had different installation

approaches than the official ones, such as OpenCV and PCL. The solution was

to clean the packages or dependencies that caused errors and to reinstall the

ones we need through trial and error.

4. Unstable connection between Jetson and RealSense D435i

This problem happens less frequently when testing the camera on our own

laptop but it becomes much worse when connecting the camera with Jetson.

There are errors showing the USB port cannot be found when launching the

camera through ROS, while the GUI provided by RealSense always works like

a charm, which is confusing. The current solution, which kills this problem

90% of the time, is to launch the camera along with the initial_reset

argument and low FPS for both RGB and the depth streams, followed by

unplugging and plugging the camera (N.B. it’s important to re-plug the camera

only after the launch file is launched).

Teamwork

• Nick continued to focus on the RC car and developed the PID speed control

with the encoder installed. He also fixed the suspension and replaced the tires

so that the chassis can support the stack without scraping the ground when

moving. He also worked with Rathin to test the localization.

• Rathin secured the Husky robot from Prof. Kantor, found better wheels from

other non-used RC platforms to replace ours, and took part in every aspect of

the RC car testing and validation. He also got the PCB working after I

soldered the components.

• Jiayi kept refining the waypoint generation after integrating my perception.

She actively tested it so that I was able to get feedback and changed the pose

estimation script accordingly.

• Yilin integrated the localization and perception together on the RC car and

solved any conflict on Jetson, which was challenging as well as exhausting.

He also took an active part in testing the RC car, accomplished the very basic

leader follower on the RC car with Husky as the leader, though it still required

a lot of debugging.

Plans

Before SVD, I plan to refine the pose estimation algorithm whenever it causes any

error in the real testing. I will also try to add tracking to reduce wobbling as suggested

by Grace during the PR. Finally, I will be actively involved in the testing and

validation of the functional and performance requirements.

	Individual Progress
	Challenges
	Teamwork
	Plans

