Master of Science Robotic Systems Development

DarkBot

Quadruped Robot for Assistive Search in Narrow and Cluttered Environment

Team NightWalkers

16-681: Spring Test Plan Group B

> Kangni Liu Guangzhao Li Ting-Wei Wong Siddharth Saha

Advisor: Prof. Sebastian Scherer

February 13, 2023

Contents

1.	Introduction	2
2.	Logistics	2
3.	Schedule	2
4.	Tests	3
	4.1. Test 1: Control Interface Test	3
	4.2. Test 2: Simulation Verification Test	4
	4.3. Test 3: Payload Software Verification Test	5
	4.4. Test 4: Payload Hardware Integration Test	6
	4.5. Test 5:Payload Software Integration Test	7
	4.6. Test 6: Human detection test	8
	4.7. Test 7: Sim2Real Test	9
	4.8. Test 8: SLAM Verification Test	10
	4.9. Test 9: Peak Power and Endurance Test	11
	4.10. Test 10: Simultaneous Localization and Mapping (SLAM) Test	12
	4.11. Test 11: Human Detection Test with Pre-scripted Navigation Test	13
	4.12. Test 12: Planning Test	14

1. Introduction

The purpose of this document is to detail the testing plan of Team B - Project DarkBot for the spring 2023 semester. The objective of these tests is to ensure that our subsystems are aligned with the target performance requirements listed in Appendix A. The progress of the tests will be regularly updated in progress reviews and the results will be shown in the Spring Validation Demonstration.

Additionally, this document provides a comprehensive overview of the key milestones for our project. The tests are designed such that small tests are carried out before complex ones. The team will carry out them sequentially to meet all requirements for the spring semester.

2. Logistics

In the spring semester, the team will carry out all tests at the MRSD Lab. All four team members will jointly carry out the tests and no additional personnel is needed for our project. The following equipment will be necessary for the majority of our tests:

- The Team B desktop
- Unitree Go1 robot
- NVIDIA Jetson AGX Xavier
- AirLab payload
- Fisheye camera and IR camera for testing

3. Schedule

PR	Date	Test Title
1	Feb 15	Control Interface Test
2	Mar 1	Simulation Verification Test, Payload Software Verification
		Test, Payload Hardware Integration Test, Payload Software
		Integration Test
3	Mar 22	Sim2Real Test, Localization in Known Map Test
4	Apr 5	Peak Performance Test, SLAM Test
5	Apr 19	Human Detection Test with Pre-scripted Navigation
6	Apr 26	Planning Test

4. Tests

4.1. Test 1: Control Interface Test

Objective	 Demonstrate communication with robot via ROS Assess the integrity of the Unitree Robot hardware and control interfaces To verify that, given commands sent to the robot, its internal network and control boards function properly to send and receive necessary communication messages
Elements	 ROS Robot Network: WiFi Module, Central Switch, Ethernet Connections Control Boards: Raspberry (Sport), MCU (Actuation), Nvidia Nano x2 & NX (Perception)
Equipment	 Robot Laptop Ethernet Cable Joystick Controller Robot Protection Hanger
Personnel	– person
Procedure	item aitem b
Verification	 The system will show user real time visualization of camera stream, human position, & 3D map

Objective	– To verify that the physical robot possesses qualitatively
Objective	equivalent low-level behaviors as the high-fidelity simulation
T 1	model
Elements	 – Gazebo Simulation
	– Unitree Go 1 Edu Robot
Equipment	– Desktop (Simulation)
	– Laptop (Remotely Sending Terminal Command to the Robot)
	– Joystick Controller
	 Robot Protection Hanger
Personnel	– Saha
Procedure	 Turn ON the robot and open simulation software on the
	computer
	– Make sure both the simulated robot and physical robot have
	the same setup
	– Send commands for simple leg motion to both the simulated
	robot and
	 physical robot to move each of their legs, respectively
	 Record their actuation behavior
Varification	
Verification	– The leg actuation behaviors from both ends must be
	qualitatively equivalent

4.2. Test 2: Simulation Verification Test

4.3. Test 3: Payload Software Verification Test

Objective	 If using NX as the main computer, verify data streaming from payload sensors to NX functions properly while both Lidar and IMU are connected to the Unitree robot If using Orin as the main computer, verify that data streaming, from payload sensors and Unitree sensors to Orin, functions properly and that the network bandwidth suffices the communication between external Orin and Unitree NX & two Nanos.
Elements	 Sensor Payload: 3D Velodyne Puck + IMU + Nvidia Orin(=TBD) Unitree Robot
Equipment	 Sensor Payload: 3D Velodyne Puck + IMU + Nvidia Orin(=TBD) Unitree Robot Ethernet Cables Laptop Robot Protection Hanger
Personnel	– Saha, Zack
Procedure	 Connect a PC or laptop with the robot SSH to the main computer Check the continuity and steadiness of the data streams from all sensor components
Verification	 All data streams must be continuous and steady without interruption or losses.

	To provide the interviter of the vehat alottered and encour
Objective	 To verify the integrity of the robot platform and sensor
	payload in the following:
	– The fixture provides reliable physical attachment between
	the robot and the sensor payload in both robot walking
	and sport mode
	 The electrical wiring connections between the sensor pay-
	load and the robot remain firm and tight in both robots
	walking an sport mode
Elements	– AirLab's Sensor Payload
	– Fixture Plate
	– Unitree Go 1 Edu Robot
Equipment	– AirLab's Sensor Payload
	– Fixture Plate
	– Unitree Go 1 Edu Robot
	– Joystick Controller
	- Protective Cushion/Padding
Personnel	– Zack
Procedure	 Install fixture plate onto the robot
	 Install the sensor payload on the fixture plate
	– Manually lift up the sensor payload and check whether the
	robot-fixture-payload integrity of
	- Use the joystick to command the robot to walk forward,
	backward, and sideways to check the robot-fixture-payload
	integrity – Use the joystick to command the robot to run in sport
	mode forward, backward, and sideways to check the
	robot-fixture-payload integrity
	 Perform the above procedure again with all electrical
	connections plugged in to check whether all components are
	powered throughout the entire process
Verification	 Fixture plate and sensor payload do not become loose
	– No crack or damage occurs.
	- Electronic equipment stayed powered on and function
	properly throughout the entire testing process (i.e., as if the
	robot is standing still)

4.4. Test 4: Payload Hardware Integration Test

4.5. Test 5:Payload Software Integration Test

Objective	 To verify the communication between Orin and NX/Nanos
Objective	5
	on the robot have seamless communication to support basic
	subprocesses in the exploration stack
Elements	– Unitree robot
	 Autonomous exploration software stack
	 Sensor/compute payload
Equipment	– Unitree robot
	 Joystick controller
	 Sensor compute payload
	– Laptop
	– Ethernet cable
	 Robot protection hanger
Personnel	Andrew
Procedure	 Push a bug-free code onto Orin and run a sub-process in the
	exploration stack
	 Check if the messages sent from robot Nano/NX perception
	boards and Raspberry/MCU sport board are received and
	properly processed to produce desired output
Verification	– The sub-process should be able to run continuously for a
	while without any crashes and produce correct outputs

Objective	 To test human detection neural network performance on the local computer, without slam
Elements	 the human detection system
Equipment	– TeamB computer
	– fisheye camera
	– IR camera
	– a TeamB member
Personnel	– Connie
Procedure	 The camera is placed at 7m distance facing a human under good lighting conditions. The human moves between various poses to demonstrate the failure and success modes of human detection at this distance.
Verification	 human shape is recognized and marked on Rivz within 5 seconds in each of the following positions at 7m sub-processes: standing, seated, side-lying, lying on his back, lying on his stomach.

4.6. Test 6: Human detection test

4.7. Test 7: Sim2Real Test

Objective	 To verify the same high-level routine code will generate the same behavior from both the physical robot and the simulated robot
Elements	– Gazebo
	– Unitree Robot
Equipment	 Linux desktop or laptop
	– Unitree Robot
	 Joystick controller
	 Robot protection hanger
Personnel	– Andrew, Saha
Procedure	 Complete a bug-free high-level routine code
	 Push it to the simulated robot on Gazebo and record its
	high-level behaviors (e.g., translational/rotation motion of the entire robot)
	 Push it to the physical robot and records its actual high-level
	behaviors (e.g., translational/rotation motion of the entire robot)
	 Compare two sets of data and compute the percent difference error
Verification	 The simulation and physical system must possess the same
	qualitative high-level behavior
	– The changes in translation and rotation from the simulated
	robot and physical robot must be within 20%

4.8. Test 8: SLAM Verification Test

Objective	 Verify all the state-estimate-purpose related hardware is
	working and Orin can access the necessary data stream and
	messages seamlessly before SLAM stack integration
Elements	– Velodyne Puck 3D LiDAR, IMU, Orin
	 Unitree Robot sensors and internal network
Equipment	 Sensor compute payload
	– Unitree robot
	 Joystick controller
	– Laptop
	 Robot protection hanger
Personnel	– Andrew, Zack
Procedure	 Study what data streams and messages are needed for
	SuperOdometry-based SLAM to work properly
	 Push a script to Orin so that it can receive these messages all
	at once
	 Check whether data and messages received are expected
Verification	– All the data and messages should be accessed continuously
	without any issues while this process does not interfere with
	other running processes

 To verify the robot is able to function at an extended period of
time when all the compute-related components are running at
maximal allowable bandwidth
 Robot: Nano x2, NX, Main Control Unit, Raspberry
– Payload: Orin
– Unitree robot
 Sensor compute payload
– PC or laptop
– Ethernet cable
 Robot protection Hanger
– Zack
– Turn on the robot
 Secure robot with protection hanger
 Push exploration-related code onto Orin and boards in the
robot
 Have the necessary code run simultaneously
– Watch the status of the robot and payload compute, including
remaining battery life, temperature (if applicable), memory
consumption, and remaining communication bandwidth
– The overall system should be able to run for at least 30
minutes continuously without any issues to support future
development

4.9. Test 9: Peak Power and Endurance Test

4.10. Test 10: Simultaneous Localization and Mapping (SLAM) Test

O1 · · ·	
Objective	 To verify that the robot is able to map an unknown area well
	while remaining a reasonably accurate pose throughout the
	mapping process
Elements	 Unitree robot hardware
	 AirLab's sensor payload
	 SLAM software stack
Equipment	 Unitree robot hardware
	– AirLab's sensor payload
	 Joystick controller
	– Laptop
Personnel	– Andrew, Zack
Procedure	 Turn on the robot and make sure all components function properly
	– Use the joystick controller to make sure the robot is
	controllable and able to move forward/backward/sideward
	– Use the laptop to send commands to the robot to start
	mapping mode
	– Use the joystick to move the robot a bit to make sure a map is
	initialized and growing
	– Control the robot to go around MRSD lab and/or NSH B level
	on pre-prescribed and measured "ground truth" routes for
	later comparisons
	 Come back to the area near map initialization location
	 Finish mapping and switch to pure localization mode
Verification	 The robot is able to run through the entire process without
	crashing
	– The robot pose trajectory should remain within 0.5m
	compared to the ground truth routes on standard floor maps
	– The map created should easily coincide with the standard
	floor map upon visual inspection
	– The map creation process does not interfere with other
	software processes in terms of communication bandwidth,
	memory, and computation consumption

4.11. Test 11: Human Detection Test with Pre-scripted Navigation Test

Objective	 To test human detection neural network performance on the robot (without slam, the information of human location is not added to the slam map)
Elements	– the human detection system
Equipment	– TeamB computer
	– a robot with cameras
	 and a team B member
Personnel	– Connie
Procedure	 Input the start point and destination point for the robot,
	having a human lying on the ground near its destination
	(within 7 meters) under good lighting conditions. The human
	moves his body and makes different poses.
Verification	 the human shape is recognized and marked on Rivz within 5
	seconds in each of the following positions at a 7m distance:
	standing, seated, side-lying, lying on his back, and lying on
	his stomach.

4.12. Test 12: Planning Test

Objective	 Human Detection Test with SLAM capabilities and planning
	between waypoints
Elements	– Unitree robot hardware
	– AirLab's sensor payload
	– SLAM software stack
Equipment	 Unitree robot hardware
	– AirLab's sensor payload
	– Joystick controller
	– Laptop
Personnel	– Saha
Procedure	 Turn on the robot and make sure all components function
	properly
	 Use the joystick controller to make sure the robot is
	controllable and able to move forward/backward/sideward
	 Use the laptop to send commands to the robot to start
	mapping mode
	 Give the robot 5 waypoints so that the planner finds a
	trajectory through them
Verification	– The human shape is recognized and marked on Rivz within 5
	seconds in each of the following positions at a 7m distance
	 The robot is able to plan between waypoints