Individual Lab Report #1

Sensors and Motors Lab
February 13, 2025

Jet Situ

Team B
Teammates: Gweneth Ge, Lance Liu, Yi Wu, Joshua Pen

Table of Contents

Contents

1

Individual Progress

1.1 Sensors and Motor Lab
1.1.1 My Contribution o

1.2 The GUI Code i e
1.2.1 dialogh
1.2.2 dialog.cpp

1.8 MRSD Project

Challenges
2.1 Sensors and Motor Lab
2.2 MRSD Project

Team Work
3.1 Sensors and Motor Lab
3.2 MRSD Project

Plans
4.1 MRSD Project

Sensors Quiz
5.1 Question 1.
T

.18
5.2 Question 2.
5.2.1 Average Filtero
5.2.2 Median Filter
52.3 Op-Amp Design
5.24 -15Vto 1.OV
5.2.5 25V to2b5V .
5.8 Question 3.

o R O N S

04]

1 Individual Progress

1.1 Sensors and Motor Lab
1.1.1 My Contribution

My contribution to the project was in two distinct, but related sections - the integration
of the numerous segments of code, and the Ul In the prior role, I worked with Wuyi in
order to separate out the distinct sensor/motor combinations into a presentable format.

Figure 1: The Full Circuit Layout

Above is the figure of the completed circuit. To divide up the motors, which can
have issues with cross-interference during their own phases, and to make distinct the
chain of actions, Wuyi and I worked together to divide the system into 6 distinct modes.
These distinct modes allowed us to demonstrate individual sensor/motor combinations
that showcased the range of motion and range of sensing, and our ability to integrate
them. In this role, I took on more of an architectural/design role, working on the mode
switches and the back and forth commands needed between the Uno and the GUI. I also
worked in a debugging role, as integration created significant problems in the operation
of the start and stop of some of the motors, which had to be addressed through automatic
stops and switches upon certain mode changes.

|BY Dialog X] Dialog x

Main Page Actuate Motors Main Page Actuate Motors
~Sensor Readings Send Commands
Potentiometer Value (deg) Send Direct Serial Command
Temperature (C) (Csend)

Ultrasonic Sensor Distance (cm)

~Control DC
Filtered Ultrasonic Sensor Distance (cm) Desired Position

Force Sensor (N) Desired Velocity

~Motor Values

~Control Servo

Servo Angle (deg)

Desired Angle
Stepper Angle (deg)

DC Encoder Motor Values

(Control Stepper
Target Velocity

Desired Angle
Velocity

Target Position

Position

Figure 2: The GUI

My next contribution was toward the GUI (done in Qt), and the interfacing between
the Arduino and the GUI. Primary work on this was done in conjunction with the in-
tegration phase, where for each mode, I added serial print commands to be sent back
to the main computer, containing the values relevant to that mode, including, but not
limited to the potentiometer reading, the temperature reading, the ultrasonic and filtered
ultrasonic readings, the force sensor readings, and for the motor section, the positions
and active PID control for each motor. These had to abide by a specific format in order
to be read by the main computer, but the format was standardized, consisting of a single
line separating parameter and value. The incoming values were displayed on the main
page of the GUI, for user reference.

The next part of the GUI was the control segment, which I wrote on the Arduino,
binding these functions to Mode 5. The format is the same as incoming messages, so
outbound messages are read in by the Arduino, which then does various functions. For
debugging purposes, I added in the function to send a direct serial command, but for
user experience, I also added in the functions to directly control the DC motor, the servo
motor, and the stepper motor. For each one, both positive and negative commands work
to actuate each motor to its full possible range of motion, in both the clockwise and
counterclockwise direction.

During demonstration, the GUI is designed to show a direct feedback loop - values
are automatically propagated and reflected back in the main page, as a verification step
for the currently running mode. This made the overall GUI user-friendly and intuitive
to use, even to first-time users.

1.2 The GUI Code
1.2.1 dialog.h

#define DIALOG_H
#include <(QDialog>
#include <QSerialPort>

#include <QSerialPortInfo>
#include <QDebug>

#include <QtWidgets>

QT_BEGIN_NAMESPACE
namespace Ui {
class Dialog;

}
QT_END_NAMESPACE

class Dialog : public QDialog

{
Q_OBJECT

public:
Dialog(QWidget *parent = nullptr);
“Dialog();

private slots:
void readSerialData();
void sendSerialData();
void sendSerialDCDatal();
void sendSerialServoDatal();
void sendSerialStepperData();

private:
Ui::Dialog *ui;
//required setup
QSerialPort *arduino;
QString arduino_port_name;
static const quintl6 arduino_uno_vendorID = 9025;
static const quintl6 arduino_uno_productID = 67;
bool arduino_is_available = false;

//for sensors

qint16 potReading;

qint16 tempReading;

gfloatl6 ultrasonicReading;
gfloatl6 filteredUltrasonicReading;
gfloatl6 forceReading;

//for servo
qfloatl6 servoReading;

//for the mode
qint8 mode;

};

#endif // DIALOG_H

1.2.2 dialog.cpp

#include "dialog.h"
#include "ui_dialog.h"

Dialog::Dialog(QWidget *parent)
QDialog(parent)
, ui(new Ui::Dialog)

{
ui->setupUi(this);
//setup here
arduino = new QSerialPort;
qDebug() << "Number of Ports: " << QSerialPortInfo::availablePorts().length();
foreach (const QSerialPortInfo &serialPortInfo, QSerialPortInfo::availablePorts()
if (serialPortInfo.hasVendorIdentifier() && serialPortInfo.hasProductIdentifie
qDebug() << "Vendor ID: " << serialPortInfo.vendorIdentifier();
gDebug() << "Product ID: " << serialPortInfo.productIdentifier();
if (serialPortInfo.vendorIdentifier() == arduino_uno_vendorID &&
serialPortInfo.productIdentifier() == arduino_uno_productID) {
arduino_port_name = serialPortInfo.portName();
arduino_is_available = true;
}
}
}
if (arduino_is_available) {
arduino->setPortName (arduino_port_name) ;
arduino->setBaudRate(QSerialPort: :Baud9600) ;
arduino->setDataBits(QSerialPort: :Data8);
arduino->setParity(QSerialPort: :NoParity);
arduino->setStopBits(QSerialPort: :0OneStop) ;
arduino->setFlowControl (QSerialPort: :NoFlowControl) ;
arduino->open(QSerialPort: :ReadWrite);
connect (arduino, &QSerialPort::readyRead, this, &Dialog::readSerialData);
} else {
QMessageBox: :warning(this, "Port error", "Arduino not found");
}
connect (ui->pushSend, &QPushButton: :clicked, this, &Dialog::sendSerialData);
connect (ui->pushSendDC,&QPushButton: :clicked, this, &Dialog::sendSerialDCData);
connect (ui->pushSendServo,&QPushButton: :clicked, this, &Dialog::sendSerialServoDa
connect (ui->pushSendStepper, &QPushButton: :clicked, this, &Dialog::sendSerialStepp
ui->radioModeO->setChecked (true) ;
}

Dialog::"Dialog()

{
if (arduino->isOpen()) {
gDebug() << "closing port";
arduino->close();
}
delete ui;
}

QString buffer;
void Dialog::readSerialData() {
buffer += QString::fromUtf8(arduino->readAll());

int endIndex;

while ((endIndex = buffer.index0f(’\n’)) !'= -1) {
QString message = buffer.left(endIndex) .trimmed() ;
buffer.remove(0, endIndex + 1);

qDebug() << "Complete message received:" << message;
//string split here
QStringlist parts = message.split(’:’);
if (parts.size() '= 2) {
qDebug() << "Invalid message format:" << message;
return; // Skip if the format is incorrect

QString label parts[0] .trimmed () ;
QString value = parts[1].trimmed();

if (label == "POT") {
ui->linePotVal->setText (value);

if (label == "TEMP") {
ui->lineTemp->setText (value) ;

if (label == "SERVO") {
ui->lineServo->setText (value) ;

if (label == "ULTRA") {
ui->lineUltra->setText (value);

if (label == "FILTERULTRA") {
ui->lineFilterUltra->setText (value);

if (label == "FORCE") {
ui->lineForce->setText (value);

}

if (label == "STATE") {
ui->radioModeO->setChecked((value.
ui->radioModel->setChecked((value.
ui->radioMode2->setChecked((value
ui->radioMode3->setChecked((value
ui->radioMode4->setChecked((value.
ui->radioMode5->setChecked((value.

}

if (label == "STEPANGLE") {
ui->lineStepper->setText(value);

}

if (label == "TARGETVEL") {

toInt ()
toInt ()

.toInt()
.toInt ()

toInt ()
toInt ()

ui->lineTargetVelocity->setText (value);

}
if (label == "VEL") {
ui->lineVelocity->setText (value);

}
if (label == "P0S") {
ui->linePosition->setText (value);

}
if (label == "TARGETPOS") {

ui->lineTargetPosition->setText (value);

void Dialog::sendSerialData() {

QString message = ui->lineSend->text().trimmed();

if (arduino->isOpen() && arduino->isWritable()) {

arduino->write(message.toUtf8());
arduino->write("\n");

qDebug() << "Sent";
ui->lineSend->clear();

void Dialog::sendSerialDCData() {

QString velocity = ui->lineDesVel->text().trimmed();
QString position = ui->lineDesPos->text().trimmed();
if (arduino->isOpen() && arduino->isWritable()) {

if (velocity != "") {
arduino->write("DCVEL:");
arduino->write(velocity.toUtf8());
arduino->write("\n");
ui->lineDesVel->clear();

} else {
arduino->write("DCP0OS:");

3D OO O OO OO O

0));
1)
2));
3));
4));
5));

arduino->write(position.toUtf8());
arduino->write("\n");
ui->lineDesPos->clear();

void Dialog::sendSerialServoData() {
QString position = ui->lineDesServo->text().trimmed();
if (arduino->isOpen() && arduino->isWritable()) {
arduino->write ("SERVO:");
arduino->write(position.toUtf8());
arduino->write("\n") ;
ui->lineDesServo->clear();

void Dialog::sendSerialStepperData() {
QString position = ui->lineDesStepper->text().trimmed();
if (arduino->isOpen() && arduino->isWritable()) {
arduino->write ("STEPPER: ") ;
arduino->write(position.toUtf8());
arduino->write("\n");
ui->lineDesStepper->clear();

1.3 MRSD Project

My role in the MRSD project was to serve as the primary liason between the AirLab’s goal
for the DARPA Triage Challenge, and the MRSD team, as well as the primary designer
of the electrical and overall software and communication architecture for the drone. To
that end, my primary goal was coordinating and constructing the drone systems to make
it fit to participate in the DARPA Triage Challenge Workshop 2, which is the workshop
being held in March in Perry, Georgia, at the onsite DARPA location. However, this
means that we had to abide by an accelerated DARPA timeline, which made our work
accelerated in comparision to the standard MRSD schedule.

Specifically, we had a qualification safety deadline by January 15th to demonstrate
the operation of our drone’s autonomous flight capability, and e-stop capability. Only
in December were we able to begin active work on the drone, which consisted of sev-
eral build phases. We first began by deconstructing the DJI Matricie 100 drone, which
serves as the mechanical base of the drone. However, to comply with DARPA NDAA
requirements, we removed all antennas, transmission devices, and computing capability
from the Matricie 100. In the next phase, we took an Aurelia X6 drone, and removed
its computing capability, GNSS antenna, transmitter, and step-down converter. Because
these parts were NDAA compliant, we were able to then transfer these components, and
integrate them onto the DJI drone, which I headed the effort for. As part of our third
build phase, we then routed the power from the DJI battery to the new subcomponents,
powering the radio, GPS, the Cube Blue autopilot, and the gimbal device. Following
that, we ran a payload flight test, verifying that the drone’s stabilizing controllers could
handle the increased payload in its configuration.

My next role then consisted of organizing the test flight at NREC, and integrating the
QGroundControl interface that we used for the initial autonomous test flight. I worked
with Lance to achieve this, setting up the QGroundControl interface, flight plan, geofence,
and MavLink communication to the drone. Finally, we were able to take a video of the
drone in action, sending it to DARPA, and qualifying for the first workshop.

After the January 15th deadline, my work on the electrical side has largely remained
the same, this time integrating the Orin with the main system, including the routing to
the radio, and the routing of the power distribution system to the Orin, drawing on the
existing breakout board present on the DJI. My most recent work has focused on the
communication protocols between the ground station, the Orin, and the onboard Cube
Blue, which has been a challenging communication task, as it operates both on the ROS
network and the MavLink protocol, with the transmission device over a remote radio
system.

2 Challenges

2.1 Sensors and Motor Lab

The largest challenge encountered during the lab was the DC motor, which had a finicky
encoder system that remained difficult to document and predict its behavior. Nailing
down the PID proved challenging, and once that was nailed down, the motor’s powering
system proved to also have a significant power draw. This means that not only did
the motor’s system require a careful amount of code to run with the proper designed
parameters, the DC motor’s on and off state must also be carefully timed and run to not

interfere with the stepper motor, which ran off the same 12V source.

This meant that integration proved tricky when operating in tandem with both the
stepper and the DC motor. To resolve this, we put both motors onto separate modes. We
further delineated these motors by having the action of one automatically shut down the
action of the other. Furthermore, the PID positional controller of the motor had to be
integrated with a stop command upon reaching an epsilon deviation of the desired state,
which safely stopped the motor running, reducing the power draw from the system.

The other challenge we faced during the sensor lab was component failure - we had
a stepper motor failure, alongside a microcontroller failure as well, which had to be
individually replaced. This cost us time, but due to the backups we made, we were able
to quickly retest on newer devices, and overcome this specific challenge.

2.2 MRSD Project

The largest beginning challenge began before the drone was even constructed - the se-
lection of components. Due to NDAA compliance being a dominating factor during the
procurement process, we were unable to have access to a wide array of cheaper, and in
many cases, more consistent devices for use on our drone. Ruling out the vast majority of
manufactured drones forced us to build our own, and this downselection also impacted our
choice of radio, firmware, autopilot, and localization hardware, which had a significant
risk of lead times and cost overruns.

The next challenge we faced was during flight testing. Because of the unproven nature
of our drone, we had to run both a payload integration test, validating that our drone was
capable of performing stable in-air flight without direct human intervention at all times,
and a fully autonomous flight in an outdoor area in a manner that would not jeopardize
the life and safety of the people within the area.

However, these flight tests would prove to be costly - a mishap during the payload
integration test lost us a propeller, and a failed flight test during the autonomous flight
testing at NREC also lost us some more propellers. Luckily, we had backups, and we
ordered more backups as a precaution against further losses. This challenge informed us
that the point of failure that ended up being most likely was the propellers - which, as a
non-electronic device, we completely overlooked, thinking that we had plenty of spares.
To mitigate this risk, we installed prop shields on our drone, both improving its safety
to the people on the ground, as well as reducing the risk of a prop break again, which
would be significantly more expensive and harder to procure.

3 Team Work

3.1 Sensors and Motor Lab

Name

Sensor

Motor

Contribution

Jet Situ

GUI

GUI implementation with Ar-
duino Integration.

Joshua Pen

Temperature Sensor

DC Stepper

Implemented a user-operated
switch with debouncing. In-
tegrated Temperature Sensor
with DC Stepper.

Lance Liu

Ultrasonic Range Finder

DC Motor

Integrated Ultrasonic Sensor
with Mean Filter and DC Mo-
tor. Designed PID controller
for DC Motor Postion Con-
trol.

Gweneth Ge

Potentiometer

RC Servo

Integrated Potentiometer
with RC Servo.

Yi Wu

Force Sensor

DC Motor

Designed PID controller for
DC Motor Velocity Control.

Table 1: Team Members and Their Components

10

3.2 MRSD Project

Name

Contribution

Jet Situ

Assisted in rebuilding the drone for NDAA compliance during the final
assembly phase, including mounting components to the provided attach-
ment mounts. Soldered connection wires between the Orin and the Cube
Blue, and connected the gimbal’s UART control system to the Cube
Blue. Validated and connected the gimbal’s data connection to onboard
networked protocol. Assisted in the development of deployed software
on the Orin, and the design of the overall software architecture proto-
col. Contributed to setting up the ROS2 architecture for inter-system
communication in the DTC. Obtained a Part 107 license for purposes of
outdoor flight evaluation and testing.

Joshua Pen

Assisted in rebuilding the drone for NDAA compliance, replacing the DJI
controller with Cube Blue ArduPilot. Soldered wires to connect various
components during the drone rebuild. Designed attachment mounts for
the Doodle Labs Radio antennas, Intel Realsense D435, and a separate
mount for the NVIDIA Orin NX and Doodle Labs Smart Radio. Devel-
oped a mounting solution for the Hadron 640R Gimbal and designed ex-
tension legs for the drone. Procured propellers and shields. Contributed
to the payload integration and configuration of the Hadron 640R with
Cube Blue ArduPilot and NVIDIA Orin NX.

Lance Liu

Contributed to the rebuilding of the NDAA compliant drone. Estab-
lished communication between the ground control station (GCS) and
the drone via a sophisticated radio system. Executed iterative refining
and testing on the embedded system. Integrated and validated the inter-
action pipeline between the GCS and the onboard Orin using MAVROS.
Designed a behavior tree to manage decision during the challenge oper-
ation. Migrated the AirLab Docker environment to support the ARM
architecture on the NVIDIA Orin, and integrated—while continuing to
adapt—AirLab’s codebase within our platform.

Gweneth Ge

Primarily contributed to the development of the first-version drone for
submitting video documentation to DARPA, focusing on sourcing and
integration of NDAA-compliant components. Helped the electrical in-
tegration, including configuring the Pixhawk ArduPilot and BlackCube
on the DJI M100 frame, as well as powering and connecting the gimbal,
cameras and radio systems. Additionally, supported overall project man-
agement and logistics.

Yi Wu

Collected human detection datasets specifically for drone applications
and conducted a literature review of 3D Human Pose Estimation (HPE)
algorithms. Collaborated with the AirLLab human detection team to test
the state-of-the-art HPE algorithm in their x86 and Jetson Orin docker
environments, wrapping the algorithm as ROS2 nodes.

Table 2: Team Members and Their Contributions

11

4 Plans

4.1 MRSD Project

Name

Contribution

Jet Situ

Polygon covering waypoints generator, including
sending entire waypoints in one go and flying to
designated position at a certain altitude. Gimbal
control protocol and sensor nodes development.
Take off/landing planner, patients searching logic,
task allocation planner, and visualization.

Joshua Pen

In my future role, I will focus on developing gim-
bal control protocols and sensor nodes, along with
additional mechanical modifications. [will as-
sist in sensor nodes development, including detec-
tion launch, visualization, and clicking interaction.
Furthermore, I will handle project management
and logistics.

Lance Liu

ROS2 network refinement. Data transmission of
sensors including RGB, Thermal and gimbal. Be-
havior tree executive and management implemen-
tation including auto takeoff, land, safe landing,
RTB, mapping, searching, and inspecting. Overall
robot system bringing up.

Gweneth Ge

Primarily work on Inter-UAV collision logic and
planner launch. Assist in sensor nodes develop-
ment, detection launch, visualization and clicking
interaction. Continue supporting on project man-
agement and logistics.

Yi Wu

Integrate the human pose estimation algorithm
with the upstream person Re-Identification (RelD)
algorithm. Test the algorithm performance on
DARPA datasets, and prepare new annotated
datasets if necessary for re-training purposes. De-
velop solutions for pose estimation algorithms us-
ing thermal camera data during nighttime condi-
tions.

Table 3: Team Members and Their Plans

5 Sensors Quiz

5.1 Question 1
5.1.1

The sensor’s range is -3.6 to 3.6g, where g refers to the force of gravity.

12

5.1.2

The dynamic range then, is the total range, which is 7.2g.

5.1.3

The capacitor in this case acts as a form of a low-pass filter. It achieves this by averaging
out sudden noise shocks in the form of a small microfarad storage, which absorbs small
noises that would otherwise produce significant swings within the accelerometer output.
High frequency passes will be absorbed by the capacitor, not being picked up in the
output voltage.

5.1.4

Vout = 300a + 1.5, where a refers to the current acceleration measured by the sensor.

5.1.5

Nonlinearity is expected at 0.0216g. This is because the nonlinearity is at 0.3% of the
full scale, so 0.3%(7.2) = 0.0216

5.1.6
1600Hz

5.1.7
(150ug/vVHz)(5v/H2)(107) = 0.75mg

5.1.8

The best way to determine the RMS noise experimentally is to subject the accelerometer
to standard gravity. Leave the accelerometer on the table in the x orientation, then the y
orientation, then the z orientation, and measure the output voltage for each pin. Because
standard gravity is left uncalibrated, we can then measure the output voltage with an
oscilloscope, which can then tell us the amplitude of the fluctuation in the voltages. We
can then measure that to get our RMS. The assumption here is that the accelerometer
is not already calibrated, or set to an offset that negates gravity, and that the testing
environment is sterile, so no sources of outside interference can happen.

5.2 Question 2
5.2.1 Average Filter

The first problem in a moving average filter is the balancing act between the averaging
filter and the need for specific datapoints - if the moving average filter averages over
too long of a timeframe, then critical datapoints that needed to be obtained would be
otherwise filtered out.

The second problem is that moving average filters would remain susceptible to high-
frequency, high amplitude noisy inputs. Because there isn’t a separate filter prior to the

13

moving average filter, these noises can still make it in, significantly biasing the existing
data.

5.2.2 Median Filter

Like the average filter, the first problem with a median filter is that it can fail to capture
data if spread across too wide of a timeframe. Data that is important, or needing to be
logged can be buried underneath a larger amount of signals, losing the insight that was
necessary to be seen.

The second problem with a median filter lies in a non-normal or skewed distribution.
In this specific case, while more significant data can be present on one end, the median
could filter out these insights, since those datapoints would be equally weighted as data-
points on the other side of the median. For skewed distributions, a lot of the insight on
the distribution would be filtered out or lost.

5.2.3 Op-Amp Design

Based on the op-amp design, the equations for the voltage is:

Vi—Vo Vo—Vou
R Ry

5.2.4 -1.5V to 1.0V

In this design, V5 should be the input, and V; should be at -3V. Therefore, at -1.5V, V,,;
= 0, and R; = Ry, so a ratio of 1. At 1.0V, V,ut must equal 5V.

5.2.5 -2.5V to 2.5V

This isn’t possible to be calibrated. Let Vi be the input voltage, in this case, R;/R;
would be -1. Let V4 be the input voltage, but that would mean that Ry/R; = 0.

5.3 Question 3
5.4

Calculate the error at each timestep, which is the positional delta between desired and
actual position (this would require an encoder of some kind to track the position). Then,
tune a Kp, Kd, and Ki values, and punch in the positional error and multiply it by
Kp. In addition, to the derivative term, add a velocity error, which is equal to the
current velocity, since the desired ending velocity is 0. Finally, integrate the position,
and multiply that Ki, to achieve the integral term. With tuned values, that equals the
input to feed to the motor, and repeat until converged.

9.9

If it’s sluggish, that means it’s rise time is slow. Increasing Kp will make the gains go
much faster, making the system more aggressive overall.

14

5.6

If there’s significant steady-state error, that means that there’s an accumulation error.
To mitigate errors caused by accumulation, tune Ki to correctly adjust for integral drift.

5.7

If there’s too much overshoot, there’s two ways of fixing this. The direct way is to
increase Kd, which dampens the velocity of the system, which can avoid overshoots.
That is the main way. The second alternative way is to reduce Kp, which will have other
consequences, such as increasing rise time.

15

