
Individual Lab Report #1
Sensors and Motors Lab

February 13, 2025

Joshua Pen

Team B

Teammates: Gweneth Ge, Lance Liu, Yi Wu, Jet Situ

Table of Contents

Contents

1 Individual Progress 1
1.1 Sensors and Motor Lab . 1

1.1.1 Joshua . 1
1.2 MRSD Project . 2

2 Challenges 2
2.1 Sensors and Motor Lab . 2
2.2 MRSD Project . 2

3 Team Work 3
3.1 Sensors and Motor Lab . 3
3.2 MRSD Project . 4

4 Plans 5
4.1 MRSD Project . 5

A Arduino Code 5

B Sensors & Motor Control Quiz 6

1 Individual Progress

1.1 Sensors and Motor Lab

1.1.1 Joshua

In this lab, my primary responsibilities included developing the code and constructing
the circuit for the temperature sensor, DC stepper motor, and a push button. The push
button was designed to function as a user-operated switch with debouncing to ensure
reliable state transitions. Additionally, I was tasked with integrating all team members’
circuits and code into the final demonstration platform.

I utilized a low-voltage temperature sensor, specifically the TMP36, interfaced with
an Arduino. The Arduino’s analog-to-digital converter (ADC) provides readings ranging
from 0 to 1023, corresponding to input voltages between 0 and 5 volts. To convert the
sensor’s ADC reading to voltage, the following formula is used:

Voltage (V) = (Sensor Reading÷ 1023)× 5 (1)

According to the TMP36 datasheet, the output voltage is linearly related to temperature,
with a scale factor of 0.01 V per degree Celsius and a 0.5 V offset. This means that at
0°C, the output is 0.5 V, and it increases by 0.01 V for each degree rise in temperature.
To convert the voltage reading to temperature, the formula is:

Temperature (°C) = (Voltage (V)− 0.5)× 100.0 (2)

By applying these formulas, I established a transfer function to convert the sensor’s
voltage output to degrees Celsius.

In this lab, I utilized the EasyDriver stepper motor driver to control both the di-
rection and the number of steps of a stepper motor. The temperature sensor employed
has a measurement range from -55°C to 125°C. I mapped the temperature readings to
the stepper motor’s movements, assigning positive temperatures to clockwise rotations
and negative temperatures to counterclockwise rotations. To achieve this, I converted
the temperature values into corresponding step counts, ensuring that each degree Celsius
equated to a specific number of motor steps. Given that the stepper motor requires ap-
proximately 3,194.4 steps to complete a full 360-degree rotation, the conversion equation
is:

Steps = (Temperature (°C)÷ 360)× 3194.4 (3)

This formula enables precise mapping of the temperature reading in degrees Celsius
to the corresponding angular degrees of rotation of the motor.

In my implementation, I enhanced the system’s interactivity by adding serial com-
munication capabilities. Users can input the command tmp into the serial terminal to
prompt the stepper motor to rotate by an angle corresponding to the current temperature
reading. Additionally, by entering a numerical value, the stepper motor will rotate by
that specified number of degrees. This dual-input approach allows for both sensor-driven
and manual control of the motor’s position.

In my circuit design, I incorporated a push button to toggle the system between sensor
feedback control and user inputs from our GUI. This state transition is managed within an
interrupt handler. To address potential signal bouncing, the handler includes a debounce
mechanism: if the button signal fluctuates within a 300ms window, it’s identified as
bounce noise, and the state change is disregarded.

1

1.2 MRSD Project

My initial role in the project focused on the mechanical components of the drone. With
a January 15 deadline for a DARPA demo flight, the test included autonomous day-
time takeoff, landing, waypoint navigation to the target patient, nighttime takeoff and
landing, and emergency stop (e-stop) capabilities using QGroundControl. To meet these
requirements, we began by rebuilding the DJI Matrice M100, ensuring all components
were NDAA compliant by replacing the DJI controller with Cube Blue ArduPilot.

I designed attachment mounts for the Doodle Labs Radio antennas, Intel Realsense D435,
and a separate mount for the NVIDIA Orin NX and Doodle Labs Smart Radio. Addition-
ally, I developed a mounting solution for the Hadron 640R Gimbal and designed extension
legs for the drone. I also procured propellers and shields.

During test flights for the demo video, I assisted by 3D printing extra components and
modifying mounts to address any damage that occurred. After completing the demo, I
redesigned all mounts to ensure even payload distribution and refined the overall design.
Lastly, I contributed to the payload integration and configuration of the Hadron 640R
with Cube Blue ArduPilot and NVIDIA Orin NX.

2 Challenges

2.1 Sensors and Motor Lab

One challenge I encountered during the sensor and motor lab was locating the datasheet
and determining the conversion for the temperature sensor from volts to degrees Celsius.
The datasheet provided only a graph, so I estimated the equation to map the values.
For instance, with sensors like the TMP36, the output voltage is linearly related to
temperature, typically providing 0.01 V per degree Celsius with a 0.5 V offset. This
means that at 0°C, the output is 0.5 V, and it increases by 0.01 V for each degree rise in
temperature. To convert the voltage reading to temperature, the formula is:

Temperature (°C) = (Voltage (V)− 0.5)× 100.0 (4)

However, without a clear equation in the datasheet, I had to approximate this relation-
ship from the provided graph, which introduced potential inaccuracies in my temperature
measurements.

Another challenge I encountered during this lab was that I couldn’t control the DC
stepper motor to rotate counterclockwise. Using a multimeter to measure the resistance
between each pin, I discovered a short circuit in the Easydriver microcontroller. After
replacing the microcontroller, I was able to resolve the issue.

2.2 MRSD Project

One of our biggest challenges as a team arose during flight testing for the DARPA demo
video. The test included autonomous daytime takeoff, landing, waypoint navigation to
the target patient, nighttime takeoff and landing, and emergency stop (e-stop) capabilities
with QGroundControl.

2

During testing, we broke two sets of propellers, requiring us to order replacements
before resuming. Unfortunately, both replacements also broke, forcing us to order six ad-
ditional sets to complete the demo. To mitigate this issue, we decided to install propeller
guards to reduce the risk of propeller damage during crashes.

We also encountered challenges with the payload integration and configuration of
the Hadron 640R with Cube Blue ArduPilot and the NVIDIA Orin NX due to NDAA
compliance restrictions. Since we were not allowed to use the HereLink device provided
by the company because of its Wi-Fi capabilities, we opted to connect the gimbal via
Ethernet to the NVIDIA Orin NX, enabling video streaming from the gimbal.

3 Team Work

3.1 Sensors and Motor Lab

Name Sensor Motor Contribution

Jet Situ GUI GUI implementation with Ar-
duino Integration.

Joshua Pen Temperature Sensor DC Stepper Implemented a user-operated
switch with debouncing. In-
tegrated Temperature Sensor
with DC Stepper.

Lance Liu Ultrasonic Range Finder DC Motor Integrated Ultrasonic Sensor
with Mean Filter and DC Mo-
tor. Designed PID controller
for DC Motor Postion Con-
trol.

Gweneth Ge Potentiometer RC Servo Integrated Potentiometer
with RC Servo.

Yi Wu Force Sensor DC Motor Designed PID controller for
DC Motor Velocity Control.

Table 1: Team Members and Their Components

3

3.2 MRSD Project

Name Contribution

Jet Situ Assisted in rebuilding the drone for NDAA compliance
during the final assembly phase, including mounting
components to the provided attachment mounts. Sol-
dered connection wires between the Orin and the Cube
Blue, and connected the gimbal’s UART control system
to the Cube Blue. Validated and connected the gim-
bal’s data connection to onboard networked protocol.
Assisted in the development of deployed software on the
Orin, and the design of the overall software architecture
protocol. Contributed to setting up the ROS2 architec-
ture for inter-system communication in the DTC. Ob-
tained a Part 107 license for purposes of outdoor flight
evaluation and testing.

Joshua Pen Assisted in rebuilding the drone for NDAA compliance,
replacing the DJI controller with Cube Blue ArduPi-
lot. Soldered wires to connect various components dur-
ing the drone rebuild. Designed attachment mounts for
the Doodle Labs Radio antennas, Intel Realsense D435,
and a separate mount for the NVIDIA Orin NX and
Doodle Labs Smart Radio. Developed a mounting solu-
tion for the Hadron 640R Gimbal and designed exten-
sion legs for the drone. Procured propellers and shields.
Contributed to the payload integration and configura-
tion of the Hadron 640R with Cube Blue ArduPilot and
NVIDIA Orin NX.

Lance Liu Contributed to the rebuilding of the NDAA compliant
drone. Established communication between the ground
control station (GCS) and the drone via a sophisticated
radio system. Executed iterative refining and testing
on the embedded system. Integrated and validated the
interaction pipeline between the GCS and the onboard
Orin using MAVROS. Designed a behavior tree to man-
age decision during the challenge operation. Migrated
the AirLab Docker environment to support the ARM ar-
chitecture on the NVIDIA Orin, and integrated—while
continuing to adapt—AirLab’s codebase within our plat-
form.

Gweneth Ge Primarily contributed to the development of the first-
version drone for submitting video documentation to
DARPA, focusing on sourcing and integration of NDAA-
compliant components. Helped the electrical integra-
tion, including configuring the Pixhawk ArduPilot and
BlackCube on the DJI M100 frame, as well as power-
ing and connecting the gimbal, cameras and radio sys-
tems. Additionally, supported overall project manage-
ment and logistics.

Table 2: Team Members and Their Contributions

4

Name Contribution

Yi Wu Collected human detection datasets specifically for
drone applications and conducted a literature review of
3D Human Pose Estimation (HPE) algorithms. Collab-
orated with the AirLab human detection team to test
the state-of-the-art HPE algorithm in their x86 and Jet-
son Orin docker environments, wrapping the algorithm
as ROS2 nodes.

Table 3: Team Members and Their Contributions

4 Plans

4.1 MRSD Project

In my future role, I will focus on developing gimbal control protocols and sensor nodes,
along with additional mechanical modifications. I will assist in sensor nodes development,
including detection launch, visualization, and clicking interaction. Furthermore, I will
handle project management and logistics.

A Arduino Code

1 // Pin definitions

2 const int stepPin = 8; // STEP pin

3 const int dirPin = 10; // DIR pin

4 const int TEMP_SENSOR_PIN = A3; // Temperature sensor analog pin

5

6 // Motor control parameters

7 int stepDelay = 100; // Pulse delay (microseconds)

8 bool isRunning = false; // Motor running status

9

10 // Test pin definitions

11 const int outPin4 = 4; // Test pin 4

12 const int outPin5 = 5; // Test pin 5

13

14 void setup() {

15 Serial.begin (9600);

16

17 // Set pin modes

18 pinMode(stepPin , OUTPUT);

19 pinMode(dirPin , OUTPUT);

20

21 // Set clockwise direction

22 digitalWrite(dirPin , HIGH); // HIGH for clockwise

23 }

24

25 void loop() {

26 float temperature = readTemperature ()*10;

27 int temperature_int = (int)temperature;

28 if (Serial.available () > 0) {

29 String command = Serial.readStringUntil(’\n’);

30 command.trim();

5

31

32 if (command == "tmp" || command == "TMP") {

33 isRunning = true;

34 Serial.println("Rotate␣according␣to␣temperature");

35 }

36 else if (isNumeric(command)) {

37 isRunning = true;

38 temperature_int = (int)(command.toFloat () /360*1585);

39 Serial.println("Rotate␣according␣to␣use -demand␣degrees");

40 }

41 else {

42 isRunning = false;

43 Serial.println("Enter␣tmp␣to␣rotate␣according␣to␣

temperature ,␣or␣enter␣use -demand␣degrees␣to␣rotate␣

according␣to␣use -demand␣degrees");

44 }

45 }

46

47 if (isRunning) {

48 for (int i = 0; i < temperature_int; i++) {

49 digitalWrite(stepPin , HIGH);

50 delayMicroseconds(stepDelay);

51 digitalWrite(stepPin , LOW);

52 delayMicroseconds(stepDelay);

53 }

54 isRunning = false;

55 }

56

57 }

58

59 float readTemperature () {

60 int sensorValue = analogRead(TEMP_SENSOR_PIN);

61 Serial.print("sensorValue:␣");

62 Serial.println(sensorValue);

63 // Convert analog reading to temperature

64 // For LM35: (sensorValue * 5.0 * 100.0) / 1024.0

65 // For TMP36: ((sensorValue * 5.0 / 1024.0) - 0.5) * 100.0

66 float voltage = (sensorValue * 5.0) / 1024.0;

67 float temperature = (voltage - 0.5) * 100.0; // For TMP36 sensor

68 return temperature;

69 }

70

71 boolean isNumeric(String str) {

72 if(str.length () == 0) return false;

73

74 for(char i = 0; i < str.length (); i++) {

75 if(! isDigit(str.charAt(i))) return false;

76 }

77 return true;

78 }

nguage=C++]

B Sensors & Motor Control Quiz

6

Sensors and Motor Control Lab Quiz

1. Reading a datasheet. Refer to the ADXL335 accelerometer datasheet

(https://www.sparkfun.com/datasheets/Components/SMD/adxl335.pdf) to answer the below

questions.

o What is the sensor’s range?

The minimum range is from -3g to 3g but typical specification says it’s from -3.6g to 3.6g

o What is the sensor’s dynamic range?

For X and Y axis dynamic range = 20 log(3.6/(150 * 10^(-6)))= 87.6dB

For Z axis dynamic range = 20 log(3.6/(300 * 10^(-6)))= 81.6dB

o What is the purpose of the capacitor CDC on the LHS of the functional block diagram on p. 1?

How does it achieve this?

The purpose of the capacitor is to decouple the accelerometer from noise on the power supply. It

achieves this by bypassing the power supply.

o Write an equation for the sensor’s transfer function.

Vout=0.3a+1.5 since the sensitivity is 300mV/g and when there is 0g Vout is 1.5V.

o What is the largest expected nonlinearity error in g?

The largest nonlinearity error in g is 0.3% of 7.2g so it is 0.003*7.2g=0.216g.

o What is the sensor’s bandwidth for the X- and Y-axes?

The sensor’s bandwidth for the X and Y axes is 1600Hz.

o How much noise do you expect in the X- and Y-axis sensor signals when your measurement

bandwidth is 25 Hz?

The noise density is 150 ug/ (Hz)^0.5, so I expect 150 * 10^(-6) * (25)^0.5=0.75 * 10^(-3)g=0.00075g.

o If you didn’t have the datasheet, how would you determine the RMS noise experimentally? State

any assumptions and list the steps you would take.

I would have the sensor held still so the true input signal is 0 and gather a time series of output

measurements. I would take the sample average of these measurements to be the mean, and subtract it

from each measurement to get the deviations. The RMS noise will be the square root of the average of

the squares of the deviations.

2. Signal conditioning

o Filtering

● Name at least two problems you might have in using a moving average filter.

In a moving average filter if there is an outlier in the collected data it may skew the results of the overall

reading from the sensor in the next few inputs depending on how many sensor readings are averaged

together. Another problem is the window size of the filter may affect how well it is able to smooth out

the sensor readings. Too small of a window size may not have enough effect on smoothing out the data

while a window size too large can over smooth the data causing the data to lose important information

that might be relevant.

● Name at least two problems you might have in using a median filter.

One problem for the median filter is that some details in the data collected could be filtered out since it

does not take account of the outlier data that pops up if the rest of the data has similar measurements.

So, if the outlier data is a measurement of a bird suddenly appearing in front of the sensor, that

information will be lost. To compute a median filter, a sorting algorithm must be run causing the overall

speed of computation to be slow. So, if the data is needed very fast the filter may cause an issue.

o Opamps

● In the following questions, you want to calibrate a linear sensor using the circuit in Fig. 1 so

that its output range is 0 to 5V. Identify in each case: 1) which of V1 and V2 will be the input

voltage and which the reference voltage; 2) the values of the ratio Rf/Ri and the reference

voltage. If the calibration can’t be done with this circuit, explain why.

● Your uncalibrated sensor has a range of -1.5 to 1.0V (-1.5V should give a 0V output and

1.0V should give a 5V output).

V2 is the input voltage and V1 is the reference voltage. Rf/Ri=1 and V1=-3V

● Your uncalibrated sensor has a range of -2.5 to 2.5V (-2.5V should give a 0V output and

2.5V should give a 5V output).

if V2 is the input voltage and V1 is the reference voltage. Rf/Ri=0 and there is no V1 that will make this

work, since Vo = -Rf/Ri *V1 + (1+Rf/Ri)V2

if V2 is the reference voltage and V1 is the input voltage. Rf/Ri=-1 and this is not possible since resistance

is positive. So the calibration can’t be done.

Fig. 1. Opamp gain and offset circuit

3. Control

o If you want to control a DC motor to go to a desired position, describe how to form a digital

input for each of the PID (Proportional, Integral, Derivative) terms.

For the proportional term I would multiply the P gain Kp by the error of the actual position minus the

desired position.

For the integral term I would sum all the past errors in position and multiply by the sampling interval and

multiply it by Ki the integral gain.

For the derivative term I would multiply the derivative gain Kd by the error in velocity or the derivative of

the position error.

o If the system you want to control is sluggish, which PID term(s) will you use and why?

By using the proportional term I am able to make the system converge faster to the desired position.

o After applying the control in the previous question, if the system still has significant steady-state

error, which PID term(s) will you use and why?

I will use the integral term to account for all the past errors and tune the system to the desired

steady-state. This is because integral terms take account of all past errors and accumulate it and correct

the error.

o After applying the control in the previous question, if the system still has overshoot, which PID

term(s) will you apply and why?

I will use the derivative term to act as a damper so that overshoot is less likely to occur. This is because

the derivative term will look at the derivative of error and act as a pull back force.

