
Individual Lab Report #1
Sensors and Motors Lab

February 13, 2025

Yi Wu

Team B

Teammates: Gweneth Ge, Lance Liu, Josh Pen, Jet Situ



Table of Contents

Contents

1 Individual Progress 1
1.1 Sensors and Motor Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Motor Wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Motor Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 PID Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.5 Velocity Control in Either Direction . . . . . . . . . . . . . . . . . 4

1.2 MRSD Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Challenges 5
2.1 Sensors and Motor Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 MRSD Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Team Work 6
3.1 Sensors and Motor Lab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 MRSD Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4 Plans 8
4.1 MRSD Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 References 8

6 Appendix: Quiz 9
6.1 ADXL335 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
6.2 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6.2.1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6.2.2 Opamps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12



1 Individual Progress

1.1 Sensors and Motor Lab

1.1.1 Motor Wiring

Powered by a 12V power supply, the 12V DC motor with encoder (251RPM) is con-
nected to the Arduino UNO via the Solarbotics L298 Compact Motor Driver, as shown
in Figure 1. I followed the wiring instructions[1] in Figure 2.

Figure 1: Connection diagram of the DC motor

The wires are connected according to the pin configuration shown in Figure 2.

Figure 2: DC motor pin configuration
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1.1.2 Motor Class

I developed a standard DC Motor class that can be reused by others. It provides motor
on/off operations, encoder tick counting, rotation direction control, and PID velocity
control, etc., as follows:

1 class Motor {

2 ...

3 void turn_on () {...

4 void turn_off () {...

5 void set_motor (){... //set rotating direction

6 void handleEncoder () {... // count encoder pos

7 void start_vel_pid () {...

8 ...

9 }

Function handleEncoder() showcases the motor tick counting. Its working principle is
based on encoding. Channel A (encoder0pinA) and Channel B (encoder0pinB) produce
pulses that are phase-shifted relative to each other, enabling position counting through
their states. The position counter (posi) is updated through an interrupt service routine
triggered by changes in Channel A. The position increases when both A and B rise, and
decreases when both fall. The complete function is:

1 void handleEncoder () {

2 bool reading = digitalRead(enca);

3 if (reading != buffer) {

4 buffer = reading;

5 bool b = digitalRead(encb);

6

7 if (reading) { // Rising edge of A

8 if (b) posi --;

9 else posi ++;

10 }

11 else { // Falling edge of A

12 if (b) posi ++;

13 else posi --;

14 }

15 }

16 }

The rotation direction is determined by writing the states to pin IN1 and IN2, where
(1,0) allows the motor to rotate clockwise, and (0,1) counterclockwise.

1

2 void set_motor(int dir , int pwm_val) {

3 pwm_val = constrain(pwm_val , lower_limit ,

upper_limit);

4 analogWrite(pwmpin , pwm_val);

5

6 if (dir == 1 && motor_state == 1) {

7 digitalWrite(in1 , 1);
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8 digitalWrite(in2 , 0);

9 }

10 else if (dir == -1 && motor_state == 1) {

11 digitalWrite(in1 , 0);

12 digitalWrite(in2 , 1);

13 }

14 else {

15 digitalWrite(in1 , 0);

16 digitalWrite(in2 , 0);

17 }

18 }

1.1.3 Sensor

I intend to use the 400 FSR (Force Sensing Resistor)[2] to control the speed of the DC
motor. In triage drone applications, this can be used for real-time force feedback and
collision avoidance.

The force sensor has a measurement range of 0.2 to 20 N. As shown in Figure 3 (left),
the sensor needs to be connected to a measuring resistor (RM) of 10kΩ to form a voltage
divider circuit. This configuration converts the force-dependent resistance change of the
FSR into a measurable voltage output (VOUT).

Based on the characteristic curves shown in Figure 3 (right), with our 10kΩ measuring
resistor, the output voltage exhibits a nonlinear relationship with applied force. To
address this nonlinearity, I developed a piecewise linear approximation transfer function
that divides the curve into four segments. The mathematical relationship between voltage
and force is implemented as follows:

F (V ) =


V
2.0
· 100 if V < 2.0V

100 + V−2.0
0.5
· 100 if 2.0V ≤ V < 2.5V

200 + V−2.5
0.5
· 400 if 2.5V ≤ V < 3.0V

600 + V−3.0
0.3
· 400 if V ≥ 3.0V

(1)

where V is the measured voltage and F (V ) is the force in grams. The final force value
is converted to Newtons by multiplying by 9.81/1000. The force values can be calculated
from the Arduino’s analog input readings. The voltage can be obtained from the analog
signal (0 ∼ 1023) read from the Arduino via the following equation:

Vout =
signal value

1024
· Vcc (2)

1.1.4 PID Velocity Control

The velocity of the motor is calculated by the following equation:

velocity =
pos− prepos

∆t
(3)

where prepos is the previous position count, pos is the current position count, and ∆t is
the sampling time interval (in seconds).
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Figure 3: Force sensor specs

To establish a mapping between the force input (in N) and the target motor velocity
(counts/second), we determined appropriate ranges for both parameters. Through exper-
imental testing, we found that the practical finger force range is 0.2 to 20 N. The encoder
resolution was measured at 5000 counts per revolution. Based on these measurements,
we established a linear mapping from force (0.2 ∼ 20N) to motor velocity (200 ∼ 5000
counts/second), which is approximately 2.4 ∼ 60 RPM.

The PID control parameters were experimentally tuned to achieve good performance
(Kp = 0.3, Kd = 0.0, Ki = 0.5). The integral term uses a decay factor of 0.99, so that it’s
eintegral = 0.99∗eintegral+e∗deltat. With these parameters, the system demonstrates
rapid convergence to the target velocity with appropriate damping to prevent oscillations.

1.1.5 Velocity Control in Either Direction

In manual input mode, users can specify velocities between −20 ∼ 20, which map to
−5000 ∼ 5000, encoder ticks, corresponding to approximately ±1 rotation per second.
Positive input causes clockwise rotation, and negative input for counterclockwise rotation.
Unlike force sensor control, this enables bi-directional rotation.

1.2 MRSD Project

My work focuses on machine learning algorithm development and deployment. I collab-
orate with the human detection team at AirLab. While they focus on people detection
and tracking algorithms, I work on human pose detection. Determining the direction
that a person’s chest and head are facing is critical, as we need to position the drone in
front of people to monitor their vital signs by detecting chest movements and facial color
changes for breathing and respiratory rate measurements.

So far, I have found suitable drone datasets for human detection, tested state-of-the-
art human pose detection algorithms in both x86 and Jetson Orin docker environments,
and wrapped the algorithm into a ROS2 node.
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2 Challenges

2.1 Sensors and Motor Lab

The primary challenge for me was the hardware aspect, particularly wiring the circuits
and working with electronic signals. I received great support from Josh with the wiring
and circuit board assembly. Understanding the encoder’s ticks/counts mechanism for
position tracking also consumed a significant amount of my time. The last challenge
involved PID parameter tuning, where I struggled with the controller performance due
to a sign error in the pwr clipping function. After correcting the sign issue in the clipping
function that constrains the external input u to [−255, 255] for the motor PWM control
signal, I gradually identified suitable values for Kp, Ki, and Kd.

2.2 MRSD Project

Finding the most suitable drone datasets and 3D human pose estimation algorithm
required some effort. After conducting the literature review and screening around 20
datasets, I identified the Semantic Drone Dataset as the most suitable option.

Testing various 3D human pose detection algorithms on single RGB images was rel-
atively straightforward. However, transforming the detected 3D bone structure into
real-world frame coordinates proved more complex, requiring understanding of computer
vision concepts like intrinsics and extrinsics matrix calculations, and some creative ap-
proaches which I am still working to fully solve.

Deploying the algorithms across x86 and Jetson Orin systems and wrapping them into
ROS2 nodes was relatively straightforward. However, testing the state-of-the-art algo-
rithm on the low-resolution DARPA videos from last year proved extremely challenging -
no poses could be detected in these blurry videos captured from 6 meters away. We will
probably need to annotate our own data and train the algorithm from scratch.
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3 Team Work

3.1 Sensors and Motor Lab

Name Sensor Motor Contribution

Jet Situ GUI GUI implementation with Ar-
duino Integration.

Joshua Pen Temperature Sensor DC Stepper Implemented a user-operated
switch with debouncing. In-
tegrated Temperature Sensor
with DC Stepper.

Lance Liu Ultrasonic Range Finder DC Motor Integrated Ultrasonic Sensor
with Mean Filter and DC Mo-
tor. Designed PID controller
for DC Motor Postion Con-
trol.

Gweneth Ge Potentiometer RC Servo Integrated Potentiometer
with RC Servo.

Yi Wu Force Sensor DC Motor Designed PID controller for
DC Motor Velocity Control.

Table 1: Team Members and Their Components
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3.2 MRSD Project

Name Contribution

Jet Situ Assisted in rebuilding the drone for NDAA compliance during the final
assembly phase, including mounting components to the provided attach-
ment mounts. Soldered connection wires between the Orin and the Cube
Blue, and connected the gimbal’s UART control system to the Cube
Blue. Validated and connected the gimbal’s data connection to onboard
networked protocol. Assisted in the development of deployed software
on the Orin, and the design of the overall software architecture proto-
col. Contributed to setting up the ROS2 architecture for inter-system
communication in the DTC. Obtained a Part 107 license for purposes of
outdoor flight evaluation and testing.

Joshua Pen Assisted in rebuilding the drone for NDAA compliance, replacing the DJI
controller with Cube Blue ArduPilot. Soldered wires to connect various
components during the drone rebuild. Designed attachment mounts for
the Doodle Labs Radio antennas, Intel Realsense D435, and a separate
mount for the NVIDIA Orin NX and Doodle Labs Smart Radio. Devel-
oped a mounting solution for the Hadron 640R Gimbal and designed ex-
tension legs for the drone. Procured propellers and shields. Contributed
to the payload integration and configuration of the Hadron 640R with
Cube Blue ArduPilot and NVIDIA Orin NX.

Lance Liu Contributed to the rebuilding of the NDAA compliant drone. Estab-
lished communication between the ground control station (GCS) and
the drone via a sophisticated radio system. Executed iterative refining
and testing on the embedded system. Integrated and validated the inter-
action pipeline between the GCS and the onboard Orin using MAVROS.
Designed a behavior tree to manage decision during the challenge oper-
ation. Migrated the AirLab Docker environment to support the ARM
architecture on the NVIDIA Orin, and integrated—while continuing to
adapt—AirLab’s codebase within our platform.

Gweneth Ge Primarily contributed to the development of the first-version drone for
submitting video documentation to DARPA, focusing on sourcing and
integration of NDAA-compliant components. Helped the electrical in-
tegration, including configuring the Pixhawk ArduPilot and BlackCube
on the DJI M100 frame, as well as powering and connecting the gimbal,
cameras and radio systems. Additionally, supported overall project man-
agement and logistics.

Yi Wu Collected human detection datasets specifically for drone applications
and conducted a literature review of 3D Human Pose Estimation (HPE)
algorithms. Collaborated with the AirLab human detection team to test
the state-of-the-art HPE algorithm in their x86 and Jetson Orin docker
environments, wrapping the algorithm as ROS2 nodes.

Table 2: Team Members and Their Contributions
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4 Plans

4.1 MRSD Project

Name Contribution

Jet Situ Polygon covering waypoints generator, including send-
ing entire waypoints in one go and flying to designated
position at a certain altitude. Gimbal control proto-
col and sensor nodes development. Take off/landing
planner, patients searching logic, task allocation plan-
ner, and visualization.

Joshua Pen In my future role, I will focus on developing gimbal con-
trol protocols and sensor nodes, along with additional
mechanical modifications. I will assist in sensor nodes
development, including detection launch, visualization,
and clicking interaction. Furthermore, I will handle
project management and logistics.

Lance Liu ROS2 network refinement. Data transmission of sensors
including RGB, Thermal and gimbal. Behavior tree ex-
ecutive and management implementation including auto
takeoff, land, safe landing, RTB, mapping, searching,
and inspecting. Overall robot system bringing up.

Gweneth Ge Primarily work on Inter-UAV collision logic and planner
launch. Assist in sensor nodes development, detection
launch, visualization and clicking interaction. Continue
supporting on project management and logistics.

Yi Wu Integrate the human pose estimation algorithm with the
upstream person Re-Identification (ReID) algorithm.
Test the algorithm performance on DARPA datasets,
and prepare new annotated datasets if necessary for re-
training purposes. Develop solutions for pose estimation
algorithms using thermal camera data during nighttime
conditions.

Table 3: Team Members and Their Contributions

5 References

[1]https://wiki.dfrobot.com/12V_DC_Motor_251rpm_w_Encoder__SKU__FIT0186_
[2]https://cdn2.hubspot.net/hubfs/3899023/Interlinkelectronics%20November2017/

Docs/Datasheet_FSR.pdf
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6 Appendix: Quiz

6.1 ADXL335

1. What is the sensor’s range?

Minimum is -3g to 3g, but typically could measure -3.6g to 3.6g. Here g represents
the acceleration due to gravity, which is approximately 9.8 m/s² (or 9.8 N/kg) at
Earth’s surface.

2. What is the sensor’s dynamic range?

The dynamic range can be calculated as | − 3.6g|+ |+ 3.6g| = 7.2g

3. What is the purpose of the capacitor CDC on the LHS of the functional
block diagram on p. 1? How does it achieve this?

According to the datasheet, the CDC (Decoupling Capacitor) is placed close to the
ADXL335 supply pins to adequately decouple the accelerometer from noise on the
power supply. For most applications, a single 0.1 F capacitor is sufficient for power
supply decoupling. It works by providing a local low-impedance energy storage
element that can filter out high-frequency noise on the power lines and maintain
a stable voltage for the chip. This is particularly important in applications where
noise is present at the 50 kHz internal clock frequency (or any harmonic thereof)
as power supply noise can cause errors in acceleration measurement.

4. Write an equation for the sensor’s transfer function.

The transfer function can be expressed as:

VOUT = Sensitivity × (g) + Zerog Bias

where:

• VOUT is the output voltage (V)

• Sensitivity is 300 mV/g (typical)

• g is acceleration in units of gravity

• Zerog Bias is 1.5V (typical)

5. What is the largest expected nonlinearity error in g?

Calculation process:

• Nonlinearity is specified as ”±0.3% of full scale”

• Full scale = Total range = 7.2g (from -3.6g to +3.6g)

• Error = 0.3% of full scale

• 0.3% of 7.2g = 0.003 × 7.2g = 0.0216g

Therefore, the largest expected nonlinearity error is 0.0216g.

6. What is the sensor’s bandwidth for the X- and Y-axes?

Default bandwidth (without external filter) is 1600 Hz. Adjustable bandwidth range
is 0.5 Hz to 1600 Hz.

9



7. How much noise do you expect in the X- and Y-axis sensor signals when
your measurement bandwidth is 25 Hz?

Given:

• Noise density = 150 g/Hz rms

• Bandwidth (BW) = 25 Hz

• Formula: Noiserms = NoiseDensity ×
√
BW × 1.6

Calculate:

Noiserms = 150 g/
√
Hz×

√
25 Hz× 1.6 = 948.75 g rms

8. If you didn’t have the datasheet, how would you determine the RMS
noise experimentally?

Experimental procedure:

• Setup:

– Mount ADXL335 rigidly to a stable surface

– Orient one axis exactly parallel to gravity

– Set desired bandwidth using appropriate filtering capacitors

– Connect outputs to a data acquisition system

• Data Collection:

– Sample at rate fsampling ≥ 4fbandwidth

– Collect data for ∼ 1 minute

– Record multiple datasets

• Analysis:

– Subtract mean value to remove DC offset

– Calculate standard deviation

– Verify across multiple datasets

• Validation:

– Test different orientations

– Compare between axes

– Perform FFT analysis

6.2 Signal Conditioning

6.2.1 Filtering

Moving Average Filter Problems:

1. Time Lag/Phase Delay

• The filter introduces a time delay equal to half the window length

• This can be critical in real-time applications or control systems

• The longer the averaging window, the greater the delay
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2. Poor Step Response

• When there’s a sudden change in the signal (step), the filter ”smears” it over
multiple samples

• The output shows a gradual ramp instead of preserving the sharp transition

• This can be problematic when detecting sudden movements or impacts

Median Filter Problems:

1. Computational Complexity

• Requires sorting operations for each window position

• More computationally intensive than moving average

• Processing time increases with window size

2. Detail Loss

• Can remove fine details or legitimate high-frequency components

• May eliminate valid spikes or brief transients that are actually part of the
signal

• Particularly problematic with larger window sizes

6.2.2 Opamps

Only the Senario 1 can be calibrated, and the Scenario 2 can not be.
Scenario 1: Sensor range -1.5V to 1.0V

• Input and Reference Voltage

– V1 will be the input voltage (varies from -1.5V to 1.0V)

– V2 will be the reference voltage

• Circuit Calibration Circuit equation: Vout = (Rf/Ri) ∗ (V1 − V2) + Vs

Boundary conditions:

– When V1 = −1.5V, Vout should be 0V

– When V1 = 1.0V, Vout should be 5V

• Solving:

– At V1 = −1.5V: 0 = (Rf/Ri) ∗ (−1.5− V2) + Vs

– At V1 = 1.0V: 5 = (Rf/Ri) ∗ (1.0− V2) + Vs

• After solving these simultaneously:

– V2 = −3V
– Rf/Ri = 1

– Vs = 1V

Scenario 2: Sensor range -2.5V to 2.5V
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• Analysis shows this cannot be calibrated:

– When V1 is input, Rf/Ri would need to be -1

– When V2 is input, Rf/Ri would be 0

– These constraints make precise calibration impossible

6.3 Control

1. If you want to control a DC motor to go to a desired position, describe how to form
a digital input for each of the PID (Proportional, Integral, Derivative) terms.

Proportional (P) Term

• Calculate error: error = desired position− current position

• Digital input: P term = Kp × error

• Provides immediate response proportional to position deviation

Integral (I) Term

• Accumulate errors over time: I term← I term +Ki × error ×∆t

• Eliminates steady-state positioning errors

• Implement anti-windup mechanisms

Derivative (D) Term

• Calculate error rate: D term = Kd × error−previous error
∆t

• Provides damping and reduces overshoot

PID Control Signal

control signal = P term + I term +D term (4)

2. If the system you want to control is sluggish, which PID term(s) will you use and
why?

Use proportional control KP if the system is sluggish, because higher Kp will pro-
duce a larger control signal for a given error so that it could decrease the rise time
and make the motor move more aggressively.

3. After applying the control in the previous question, if the system still has significant
steady-state error, which PID term(s) will you use and why?

If the system still has significant steady-state error after applying proportional
control, use the KD term, because the integral term accumulates errors over time
and continuously generates a control signal proportional to the accumulated error,
which can effectively eliminate steady-state offset in the system.

4. After applying the control in the previous question, if the system still has overshoot,
which PID term(s) will you apply and why?

If the system experiences overshoot after applying control, use the KD term because
it helps reduce overshoot by providing damping to the system response. The D
term calculates the rate of change of the error, which allows it to anticipate and
counteract rapid changes, thereby stabilizing the system and minimizing overshoot.
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