Individual Lab Report #3

Progress Review 2 February 28, 2025

Yi Wu

Team B Teammates: Gweneth Ge, Lance Liu, Yi Wu, Joshua Pen

Table of Contents

Contents

1	Individual Progress 1.1 MRSD Project	1 1
2	Challenges 2.1 MRSD Project	2 2
3	Team Work3.1MRSD Project	3 3
4	Plans 4.1 MRSD Project	4 4

1 Individual Progress

1.1 MRSD Project

First, I continued previous work by integrating human pose estimation code, including NLF (https://github.com/isarandi/nlf) algorithm and Yolo11n-pose algorithm, into AirLab's humanflow repository. I modified the algorithm code to conform to the Human-FlowBaseNode standard structure.

os2_ghadron_gimbal / src / 단 ····				
😰 jaswu51 mcap		cf76ffc · 2 days ago 🛛 🕤 History		
Name	Last commit message	Last commit date		
• ••				
PayloadSdk	Initial commit	2 days ago		
eo_image	Initial commit	2 days ago		
eo_zoom	Initial commit	2 days ago		
gimbal_angle_control	Initial commit	2 days ago		
📄 gimbal_bringup	mcap	2 days ago		
gimbal_status	Initial commit	2 days ago		
human_tracking	mcap	2 days ago		
image_publisher	Initial commit	2 days ago		
image_viewer	lock on	2 days ago		
ir_image	Initial commit	2 days ago		
ir_zoom	Initial commit	2 days ago		
rtsp_viewer	Initial commit	2 days ago		
stream_publisher	lock on	2 days ago		
yolo_detection	lock on	2 days ago		
🗅 Readme.md	Initial commit	2 days ago		

Figure 1: Github Code for Gremsy Ghadron Gimbal Control

The second part focused on gimbal control. This includes driving the gimbal via PayloadSdk and developing a series of packages. These packages handle low-level gimbal control, angle adjustments, image capture, streaming frames capture, and zoom functionality for both IR and ED (RGB) images, and for both Ubuntu and Jetson Orin systems, as shown in Figure 1 (https://github.com/jaswu51/ros2_ghadron_gimbal). Building on this foundation, I implemented human recognition using the YOLO11n-pose model and developed an incremental angle movement method to keep human bounding boxes centered in the frame, enabling human tracking. Finally, I added an image_viewer package

to display bounding boxes in real-time and a mcap storage system to store topic data, including streaming video frames, whenever ROS2 nodes are spinning.

Additionally, I initiated work on the Isaac-sim pipeline. I ran official examples and successfully established real-time communication between ROS2 and ISAAC SIM robot data.

2 Challenges

2.1 MRSD Project

During field testing, I discovered that the system can successfully detect humans in frontal view, but fails to detect humans in 45-degree downward-looking images. This issue requires further debugging to determine whether the limitation stems from the Yolo11n-pose model being too small and thus lacking the capacity to detect top-down views, or whether the entire Yolo11 series has inherent limitations in top-down detection capabilities.

Also, integrating the gimbal control with other subsystems requires thorough consideration of their calling logic. For instance, when the drone reaches a waypoint from a motion planning system, I will need to rotate the drone 360 degrees to check if there are patients, and stop the spinning the camera whenever a patient is detected, and lock on the patient. This needs careful design decisions: when to look directly downward, when to use a 45-degree angle, when to start spinning the camera, and when to stop the spinning, etc.

3 Team Work

3.1 MRSD Project

Name	Contribution
Jet Situ	Designed and implemented inter-subsystem electrical and data inter-
	faces, providing internal data transfer infrastructure for drone sensor
	fusion. Implemented new radio interface for long-range communication
	over both MAVLink and a LAN-linked signal. Provided software archi-
	tecture design and debugging assistance, as well as software QA prior to
	test flight. Assisted in debugging hardware and electrical issues prior to
	flight. Developed and executed pre-flight plans, test plans, integration
	plans, and safety tests. Coordinated with the FAA to schedule flights
	and demos, and practiced drone piloting for future tests. Designed the
	PCB schematic.
Joshua Pen	Designed, integrated, and tested Path Planner for searching the Ge-
Joshua i en	
	ofence Zone and Local Search of Patient Planner with QGroundControl.
	Initial integration of Path Planner for searching the Geofence Zone to
	ROS2 network for flight test (not integrated with Patient Detection
	yet). Designed and installed new Orin and GPS mount. Repaired or
	replaced broken extension legs, gimbal attachment mount, and motor
	before flight test. Setup and conducted autonomous flight test. Ini-
	tialized development of the new Foxglove GUI. Contributed to project
	management and logistics.
Lance Liu	Built and fine-tuned BehaviorExecutive – a ROS node that uses behav-
	ior trees to orchestrate drone operations. This node handles essential
	drone functions including auto-takeoff, auto-landing, arming/disarming,
	emergency hold (E-stop) with priority interrupt, navigation (altitude
	climbs and go-to-position commands with coordinate transforms), ROS
	plumbing (subscribers for GPS, altitude, and state telemetry; service
	clients for MAVROS integration; async handlers for non-blocking com-
	mand execution), and a real-time execution control loop (10 Hz) to
	monitor active actions and service call status. Error handling was par-
	ticularly improved by catching service timeouts, coordinate jumps, and
	FCU rejections with proper fallbacks.
Gweneth Ge	Primarily worked on project management and safety features required
	by DARPA for the March 7th workshop. Specifically, integrated Remote
	ID for continuous flight broadcasting, implemented a battery level mon-
	itor in QGroundControl to trigger a return-to-home when low, and fixed
	compass position issues to improve accuracy. Collaborated on various
	presentations including progress reviews, project management updates,
	and retrospectives.
Yi Wu	Modified human pose estimation code to conform to the standard base
	class in AirLab's HumanFlow repository. Designed ROS2 packages for
	gimbal control on both x86 and ARM systems (including angle control,
	zooming, and video streaming). Developed a patient lock-on algorithm
	featuring person detection, tracking, and visualization components. Ini-
	tiated the Isaac Sim pipeline and established communication between
	Isaac Sim and ROS2.
	15aac 51111 and 10052.

4 Plans

4.1 MRSD Project

Name	Contribution	
Jet Situ	Will assist all software personnel with debugging and software QA and integration across several different stacks. Will coordinate with DARPA and other authorities to ensure proper protocols are followed prior to test. Will assist in coordinating and running all flight tests, and robustify existing electrical components. Finally, will represent MRSD Team at the DARPA Workshop in Georgia from 03-07 to 03-15	
Joshua Pen	Fully integrate and test Path Planner for searching the Geofence Zone and Local Search of Patient Planner with QGroundControl with ROS2 network (also integrate with Patient Detection), Design, integrate and test Triage Planner. Design new mount for Rajant DX2 radio. Con- tribute to wire management.	
Lance Liu	Implement dynamic geofence boundary subscription (replace hardcoded coordinates). Develop waypoint progress monitoring. Gimbal control integration: pixel-to-geodetic conversion, gimbal/FCU Sync, streaming, gimbal tracking. Robust autonomous flight: bugs fixing, performance fine-tuning and optimization.	
Gweneth Ge	Integrate and test Foxglove as the GUI for easier commands to drone by Mar. 3rd, which will be used in workshop starting on Mar. 7th. Continue working on overall project management and meetings arrangement with the sponsor Airlab, as well as NREC and Mill19 to align upcoming flight tests and the DARPA Triage Challenge.	
Yi Wu	Upgrade the gimbal control code, including enhancing the tracking logic design, improving the speed of camera tracking, and adding human pose estimation into the gimbal control. Integrate the gimbal control with other subsystems, like controlling the gimbal based on upstream path planning behavior designs.	

Table 2: Team Members and Their Plans