
CraterGrader Transport Planner

Alex Pletta, Ben Younes, John Harrington, Russell Wong, Ryan Lee

October 4, 2022

Contents

1 Problem Description 1

2 Generalized Formulation 3

2.1 Equal Source and Sink Volumes . 3

2.2 Cases of Arbitrary Volumes . 4

2.3 Mixed-Integer Representation for Maximization Constraint 5

2.4 Transport Optimization with Mixed-Integer Constraints 7

2.5 Final Generalized Form . 7

3 Formulation for CVXOPT Implementation 8

3.1 Objective . 8

3.2 Constraints . 9

3.3 Final Matrices . 10

4 Verification Results with CVXOPT 11

1 Problem Description

The Transport Planner solves the problem of minimal-energy terrain manipulation to con-
vert an original topography to a design topography. The planner uses nodes defined with
a certain amount of volume and planar coordinates within a worksite as shown in Figure
1. A set of “source” nodes are the position of volumes that are above a design topogra-
phy and a set of “sink” nodes are the position of volumes that are below a design topogra-
phy. The planner adopts concepts of volume in a distribution and distance moved between

1

Figure 1. Optimization problem illustration.

distributions from the Earth Mover’s Distance to solve for a plan of how much volume to
move from each source node to each sink node while minimizing the total sum of volume
moved multiplied by the distances traveled; analogous to mechanical work, ignoring trans-
port rate. The transport matrix Π and distance matrix D are both n × m matrices for n
source nodes and m sink nodes.

The set of n source nodes is denoted as Ȳ and the set of m sink nodes is denoted as X̄.
Nodes are defined by planar worksite position coordinates (px, py) and source volume y or
sink volume x. For example, source node Yi is defined by < px,i, py,i, yi > and sink node
Xj is defined by < px,j, py,j, xj >. Note that this volume can also be specified as the height
at the node location; in this case the height is essentially a “1D volume”. In the case of a
discretized 2.5D height grid, the height can stand-in for actual volume since the height and
volume are just linearly related by the grid cell resolution.

Both source and sink volumes are defined as positive in order to simplify the optimization
formulation. The source volume is “extra” volume that should not be present in the final
design topography, and the sink volume is “missing” volume that must be filled in order to
match the desired design topography.

2

Ȳ ={Y1, Y2, ..., Yn} (1)

={< px,1, py,1, y1 >,< px,2, py,2, y2 >, ..., < px,n, py,n, yn >}
X̄ ={X1, X2, ..., Xm} (2)

={< px,1, py,1, x1 >,< px,2, py,2, x2 >, ..., < px,n, py,n, xm >}

where
|Ȳ | = n , |X̄| = m (3)

2 Generalized Formulation

First a distance matrix 4 is calculated between all nodes as the euclidean distance, using
the planar positions of the nodes in the worksite. Note that this distance could be squared
to speed up computation, though the bulk of planner computation time comes from solving
the optimization problem itself so the euclidean distance is kept to more closely match the
objective value to “mechanical work” (ignoring transport rate).

Di,j = d(Yi, Xj) ∀ i = 1, ..., n and j = 1, ...,m (4)

where

d(Yi, Xj) = ||Yi,p −Xj,p||22 = ||
[
px,i
py,i

]
Yi,p

−
[
px,j
py,j

]
Xj,p

||22 (5)

The overall goal is to calculate the transport matrix Π dictating which volumes should be
moved between source nodes and sink nodes. The objective 6 is to minimize total effort
expended to move volumes from the source nodes to the sink nodes. A first constraint 7 is
applied to make all transport volumes positive.

2.1 Equal Source and Sink Volumes

Additional constraints are made on volume moved between the nodes 8, 9. If the sink vol-
ume exactly equals the source volume, then the constraints are simply that the sum of vol-
ume moved from each source and to each sink total each source and sink respectively. In
other words, all sources are completely depleted and all sinks are completely filled. The
summation of volume moved is performed using one’s vectors (1) of length m and n for
sources y and sinks x respectively.

Note that going forward, the vectors y and x contain only the volume/height values.

3

min
Π

∑
i=1,2,...,n
j=1,2,...,m

Πi,jDi,j Minimize total effort expenditure (6)

s.t. Πi,j ≥ 0 ∀i, j All transports defined as positive (7)

Π1m − y = 0 Empty all sources completely (8)

1T
nΠ− x = 0 Fill all sinks completely (9)

where

y
n×1

=


y1
y2
:
yn

 , x
m×1

=


x1

x2

:
xm


2.2 Cases of Arbitrary Volumes

The constraints on the source volumes 8 and sink volumes 9 will fail in the basic formu-
lation if the source volume is not equal to the sink volume. For example, if there is more
source volume than sink, then the sink volume will be filled and 9 will be satisfied but
there will be left-over source volume and 8 will fail. Conversely, if there is more sink vol-
ume than source, all source volume will be moved so 8 will be satisfied but some sink vol-
ume will be unfilled so 9 will fail.

Extending these constraints to support solving for volume inequalities makes the planner
much more robust to node input, such as for the cases of mapping inaccuracies or an un-
derlying site topography with non-equal source and sink volumes. One simple approach to
make this extension could be to ignore some volume from the larger of the source and sink
volumes, but the question then becomes which volume to ignore. Instead, the constraints
can be re-written as mixed integer constraints to account for these volume differences while
ignoring the optimal amount and location of volume.

The two cases are:

1. Case 1: more source than sink;
∑

(y) >
∑

(x)

The sink constraint 9 will be satisfied, and the source constraint 8 will have left-over
volume. So:

Π1m − y < 0 (10)

1T
nΠ− x = 0 (11)

4

2. Case 2: more sink than source;
∑

(y) <
∑

(x) The source constraint 9 will be
satisfied, and the sink constraint will have un-filled volume. Then 1T

nΠ < x so:

Π1m − y = 0 (12)

1T
nΠ− x < 0 (13)

To make the transport optimal, the constraints then simply have to enforce that either the
sink or source will be zero for case 1 or case 2, respectively. Since the other constraint for
extra volume will be negative, then the constraint is that the maximum of the source and
sink transport volume differences is equal to zero.

max
{
Π1m − y,1T

nΠ− x
}
= 0 (14)

2.3 Mixed-Integer Representation for Maximization Constraint

We now need to re-write the new maximization constraint 14 as individual expressions for
use with the optimization problem. More generally, we want a set of constraints to enforce
X = max {x1, x2} for some threshold constant X and expressions x1, x2. We can find these
constraints by introducing a binary decision variable b and upper-bound constant M that
satisfy the following conditions:

b =

{
0, if x1 < x2

1, otherwise (i.e. x1 ≥ x2)
, M ≥ x1, x2

The definition of b and M give the following constraints:

x1 − x2 ≤Mb (15)

x2 − x1 ≤M(1− b) (16)

Which make the following cases:

1. Case 1: b = 0

Substituting b = 0 the constraints become:

x1 − x2 ≤0 Satisfied by definition of b = 0, since x1 < x2 (17)

x2 − x1 ≤M Satisfied by definition of M , since x2 − x1 ≤ x2 and x2 ≤ M (18)

In this case, x2 is the larger expression. Looking at equations 17 and 18 we can see
that the upper bound on x2 then comes from rearranging 16:

x2 ≤ x1 +M(1− b) (19)

5

2. Case 2: b = 1

Substituting b = 1 the constraints become:

x1 − x2 ≤M Satisfied by definition of M , since x1 − x2 ≤ x1 and x1 ≤ M (20)

x2 − x1 ≤0 Satisfied by definition of b = 1, since x1 ≥ x2 (21)

In this case, x1 is the larger, or equal, expression. Looking at equations 20 and 21 we
can see that the upper bound on x1 then comes from rearranging 15:

x1 ≤ x2 +Mb (22)

The maximization equality can then be enforced by lower and upper bounds on the thresh-
old constant X:

1. Lower bound constraints on threshold constant X

Since the equality constraint is a maximization, then one of the expressions must
equal the threshold and the other must be less than the threshold.

x1 ≤X (23)

x2 ≤X (24)

2. Upper bound constraints on threshold constant X

When the binary variable is zero, the upper bound is driven by equation 19. Simi-
larly, when the binary variable is one, the upper bound is driven by equation 22. So,
the threshold constant upper bounds are:

x1 +M(1− b) ≥X From Case 1 upper bound (b = 0) (25)

x2 +Mb ≥X From Case 2 upper bound (b = 1) (26)

So in summary, we can take a maximization equality constraint

X = max {x1, x2} (27)

And re-write as the following constraints, using binary decision variable b and upper-bound
constant M :

x1 ≤X (28)

x2 ≤X (29)

x1 +M(1− b) ≥X (30)

x2 +Mb ≥X (31)

6

2.4 Transport Optimization with Mixed-Integer Constraints

Using the mixed-integer representation, we can now re-write the volume transport maxi-
mization constraint 14 by making the following substitutions:

X → 0

x1 → 1T
nΠ− x

x2 → Π1m − y

M → max
{∑

(y),
∑

(x)
}

So, the constraints become:

1T
nΠ− x ≤0 (32)

Π1m − y ≤0 (33)

1T
nΠ− x+M(1− b) ≥0 (34)

Π1m − y +Mb ≥0 (35)

With binary decision variable b ∈ 0, 1.

2.5 Final Generalized Form

The final optimization problem can then be summarized as the following.

min
Π

∑
i=1,2,...,n
j=1,2,...,m

Πi,jDi,j (36)

s.t. −Πi,j ≤ 0 ∀i, j (37)

1T
nΠ− x ≤ 0 (38)

Π1m − y ≤ 0 (39)

−1T
nΠ+ x−M(1− b) ≤ 0 (40)

−Π1m + y −Mb ≤ 0 (41)

b ∈ {0, 1} (42)

where

y
n×1

=


y1
y2
:
yn

 , x
m×1

=


x1

x2

:
xm

 , M = max
{∑

(y),
∑

(x)
}

7

Note that the sink constraints 38 and 40 become tight to = 0 when there is more source
than sink (

∑
(y) ≥

∑
(x), b = 1) and constraints 39 and 41 become tight to = 0 when

there is less source than sink (
∑

(y) <
∑

(x), b = 0).

With this observation, although this is technically a mixed integer linear program because
of the binary decision variable b, the case for b can be checked prior to solving by compar-
ing the volumes of source vs. sink. In the case of non-equal volumes, the optimal solution
will use all of the lesser volume. So, b can be solved online as:

b =

{
0, if

∑
(y) <

∑
(x); more sink than source

1, otherwise (i.e.
∑

(y) ≥
∑

(x)); more source than sink (or equal)
(43)

3 Formulation for CVXOPT Implementation

CVXOPT (https://cvxopt.org/) is a python optimization library that was used for initial
planner prototyping. This section shows an example of how to implement the Transport
Planner optimization problem into linear programming matrices for the CVXOPT library
(https://cvxopt.org/userguide/coneprog.html#linear-programming).

The CVXOPT library for linear programming can solve optimization problems with the fol-
lowing form:

minimize cT x̂

subject to Gx̂ ≤ h

Ax̂ = b

Our problem is already nicely formatted for using the dot product objective cT x̂ and in-
equality constraint Gx̂ ≤ h. We will disregard the equality constraint Ax̂ = b.

3.1 Objective

To convert the objective, we simply need to turn the sum
∑

i=1,2,...,n
j=1,2,...,m

Πi,jDi,j into a dot

product of a vector c of constant cost terms and a vector x̂ of the optimization variables.
The distance matrix can be converted into the constant cost vector and the transport ma-
trix can be converted into the optimization variable vector using row major order as fol-
lows:

8

https://cvxopt.org/
https://cvxopt.org/userguide/coneprog.html#linear-programming

c
nm×1

=



d(Y1, X1)
d(Y1, X2)

:
d(Y2, X1)
d(Y2, X2)

:
d(Yn, Xm)


, x̂

nm×1
=


Π1,1

Π1,2

:
Π2,1

Π2,2

: Πm,n

 (44)

3.2 Constraints

To convert the constraints, we need to make all inequalities less than a vector of constant
values h and create a linear matrix G to multiply the optimization variable vector x̂ by.
Note that the following formulations assume row-major order.

To replicate the Π1m term in the matrix G, we can make a one’s block matrix B1,m packed
with the one’s vector 1m along the “diagonal”. There need to be n block “columns” in to-
tal to have zeros applied to the rest of the optimization variable vector x̂, and n block rows
to sum for all n source nodes y, making the final dimensions B1,m ∈ Rn×(m×n).

B1,m
n×mn

=


1m 0 ... 0
0 1m ... 0

: ...
. . . 0

: 1m

 (45)

Similarly, to replicate the 1T
nΠ term in the matrix G, we can make a one’s block matrix

B1,n packed with n identity matrices. This then applies zeros to all of the optimization
variable vector x̂ except for what would be each column in the transport matrix.

B1,n
m×mn

=
[

I
m×m

I
m×m

... I
m×m

]
(46)

These block matrices B1,m and B1,n can be used for constraints 38, 39, 40, 41. The last
constraint 37 is then to enforce that all transport volumes are positive or zero, which can
be done with an identity matrix having a diagonal of length (n×m) equal to a zero’s vector
0 of length nm.

IΠ
nm×nm

= 0
nm×1

(47)

The last step is then to form G by combining the block matrices with the respective rows
in h.

9

−IΠx̂ ≤0 Replaces constraint 37 (48)

B1,nx̂− x ≤0 Replaces constraint 38 (49)

B1,mx̂− y ≤0 Replaces constraint 39 (50)

−B1,nx̂+ x−M(1− b) ≥0 Replaces constraint 40 (51)

−B1,mx̂+ y −Mb ≥0 Replaces constraint 41 (52)

Rearranging, we then have:

−IΠx̂ ≤0 (53)

B1,nx̂ ≤x (54)

B1,mx̂ ≤y (55)

−B1,nx̂ ≤− x+M(1− b) (56)

−B1,mx̂ ≤− y +Mb (57)

So, the combined matrices G and h are:

G
(nm+2n+2m)×nm

=


−IΠ
B1,n

B1,m

−B1,n

−B1,m

 , h
(nm+2n+2m)×1

=


0
x
y

−x+M(1− b)
−y +Mb

 (58)

Note that in this formulation the source and sink vectors x and y contain only the vol-
ume/height values; their relative distances from the distance matrix are encoded already
in the constant cost vector c.

3.3 Final Matrices

The final optimization problem as solved by the CVXOPT linear programming library can be
summarized as the following:

minimize cT x̂

subject to Gx̂ ≤ h

Ax̂ = b

where

10

c
nm×1

=



d(Y1, X1)
d(Y1, X2)

:
d(Y2, X1)
d(Y2, X2)

:
d(Yn, Xm)


, G

(nm+2n+2m)×nm
=


−IΠ
B1,n

B1,m

−B1,n

−B1,m

 , h
(nm+2n+2m)×1

=


0
x
y

−x+M(1− b)
−y +Mb


(59)

The final transport solution is then contained in the optimization variable vector x̂, which
can be converted back to the full transport matrix Π by simply reshaping to n × m using
row-major order.

4 Verification Results with CVXOPT

The following results verify the planner using the implementation for the CVXOPT linear
programming library.

1. Equal source and sink volumes

The first case in Figure 2 verifies the original problem description, with equal source
and sink volumes. Note that in this case the transport is at the maximum objective
value, because all volume is moved.

2. More source volume than sink volume

The second case in Figure 3 verifies the planner with more source volume than sink
volume by removing node x4. This means there will be left-over source volume that is
not moved. The solution removes one of the long transports from y2 to x3 and leaves
left-over volume at node y2. The transport cost is also lower than for the equal-volume
case, because some of the volume is not moved.

3. More sink volume than source volume

The third case in Figure 4 verifies the planner with more sink volume than source
volume by removing node y3. This means there will be left-over sink volume that is
not filled. The solution removes the long transport from y2 to x1 and instead sends
the majority of y2 volume to the closer node at x3, leaving x1 not completely filled.
The node at x4 is completely unfilled, because all the source volume is exhausted to
closer nodes. Again, the transport cost is lower than for the equal-volume case, be-
cause not as much volume is moved overall.

11

(a) Illustration of transport plan.

(b) Transport plan matrix.

Figure 2. Optimal transport plan solved with CVXOPT linear programming library for
equal source and sink volumes.

12

(a) Illustration of transport plan.

(b) Transport plan matrix.

Figure 3. Optimal transport plan solved with CVXOPT linear programming library for
more source volume than sink volume.

13

(a) Illustration of transport plan.

(b) Transport plan matrix.

Figure 4. Optimal transport plan solved with CVXOPT linear programming library for
more sink volume than source volume.

14

	Problem Description
	Generalized Formulation
	Equal Source and Sink Volumes
	Cases of Arbitrary Volumes
	Mixed-Integer Representation for Maximization Constraint
	Transport Optimization with Mixed-Integer Constraints
	Final Generalized Form

	Formulation for CVXOPT Implementation
	Objective
	Constraints
	Final Matrices

	Verification Results with CVXOPT

